

Bootstrap for Statistical Uncertainty

Ian Lundberg
Soc 114

Winter 2025

Learning goals for today

At the end of class, you will be able to:

1. assess statistical uncertainty (sample-to-sample variability) by a computational procedure

A motivating problem

- ▶ Sample of 10 Dodger players
- ▶ Mean salary = \$3.8 million

How much do you trust this as an estimate of the population mean salary?

```
# A tibble: 3 × 2
`Salary Among Sampled Dodgers`    Value
<chr>                      <dbl>
1 sample_mean                  3829119.
2 sample_standard_deviation    6357851.
3 sample_size                   10
```

Estimator: Sample mean

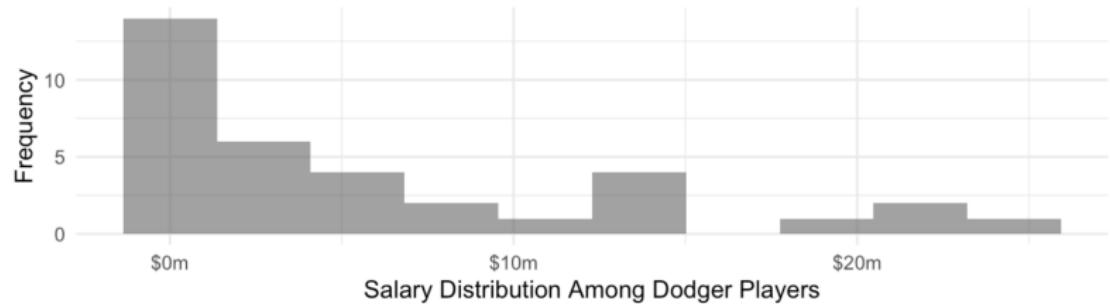
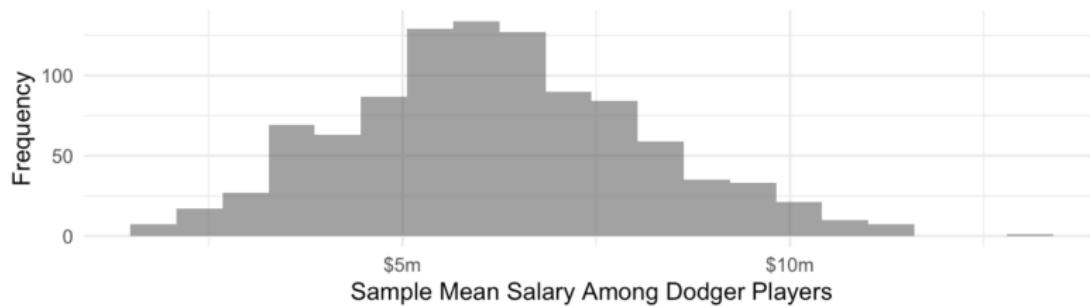
$$\hat{\mu} = \frac{1}{n} \sum_i Y_i$$

How statistically uncertain is $\hat{\mu}$?

Standard error of the sample mean

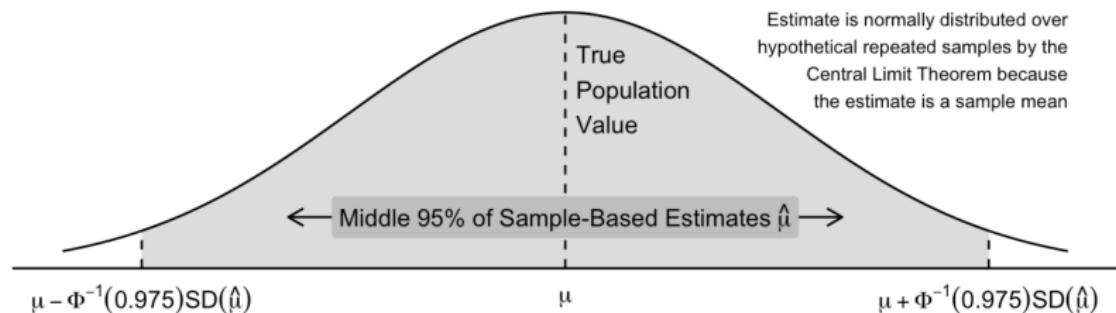
$$\text{SD}(\hat{\mu}) = \sqrt{\text{V}(\hat{\mu})} = \frac{\text{SD}(Y)}{\sqrt{n}}$$

A standard error captures sample-to-sample variability of the sample mean (second plot)



Confidence interval

$$\hat{\mu} \rightarrow \text{Normal} \left(\text{Mean} = E(Y), \quad \text{SD} = \frac{\text{SD}(Y)}{\sqrt{n}} \right)$$



Confidence interval

A 95% confidence interval is a range $(\hat{\mu}_{\text{Lower}}, \hat{\mu}_{\text{Upper}})$ such that

$$P(\hat{\mu}_{\text{Lower}} < \mu < \hat{\mu}_{\text{Upper}}) = .95$$

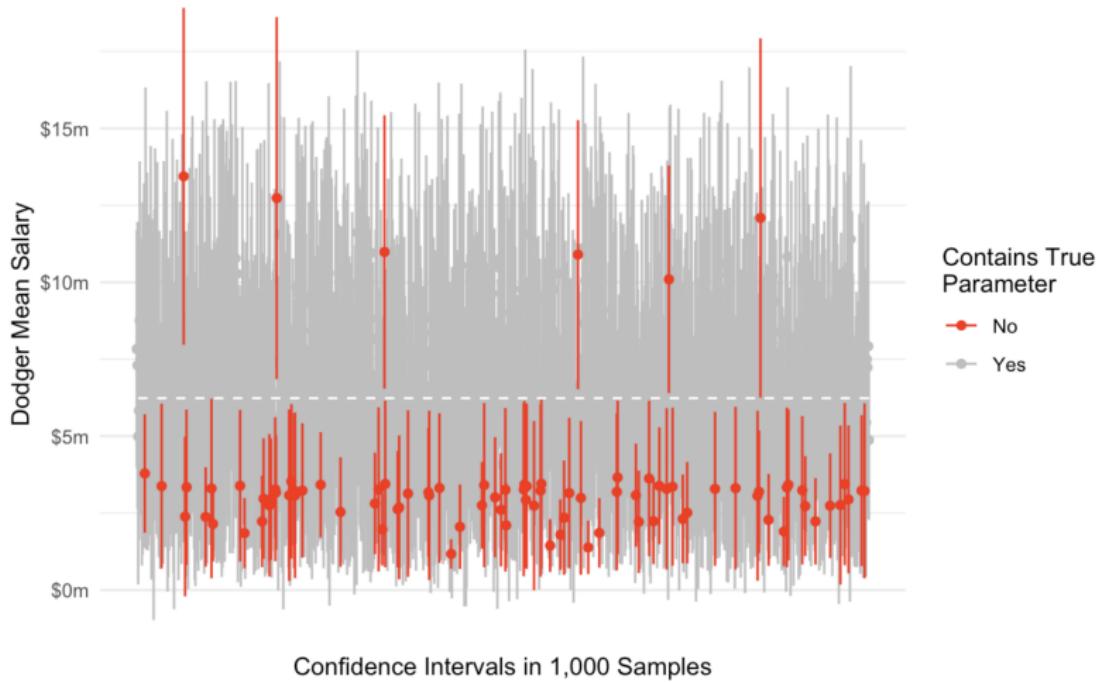
You may know this formula:

$$\hat{\mu} \pm 1.96 \times \widehat{SD}(\hat{\mu})$$

where 1.96 comes from the properties of the normal distribution.

Confidence intervals derived by math

Coverage in simulation: 91% contain the population parameter



Replacing math with computation: The bootstrap

How our estimate comes to be

$$F \rightarrow \text{data} \rightarrow s(\text{data})$$

How our estimate comes to be

$$F \rightarrow \text{data} \rightarrow s(\text{data})$$

1. The world produces data

How our estimate comes to be

$$F \rightarrow \text{data} \rightarrow s(\text{data})$$

1. The world produces data
2. Our estimator function $s()$ converts data to an estimate

```
estimator <- function(data) {  
  data |>  
  summarize(estimate = mean(salary)) |>  
  pull(estimate)  
}
```

The bootstrap idea

$$F \rightarrow \text{data} \rightarrow s(\text{data})$$

The bootstrap idea

$$F \rightarrow \text{data} \rightarrow s(\text{data})$$

$$\hat{F} \rightarrow \text{data}^* \rightarrow s(\text{data}^*)$$

The bootstrap idea

$$F \rightarrow \text{data} \rightarrow s(\text{data})$$

$$\hat{F} \rightarrow \text{data}^* \rightarrow s(\text{data}^*)$$

- ▶ F is the true distribution of data in the population
- ▶ \hat{F} is a plug-in estimator: our empirical data distribution

The bootstrap idea

1. Generate data* by sampling with replacement from data
2. Apply the estimator function
3. Repeat (1–2) many times. Get a distribution.

Original sample

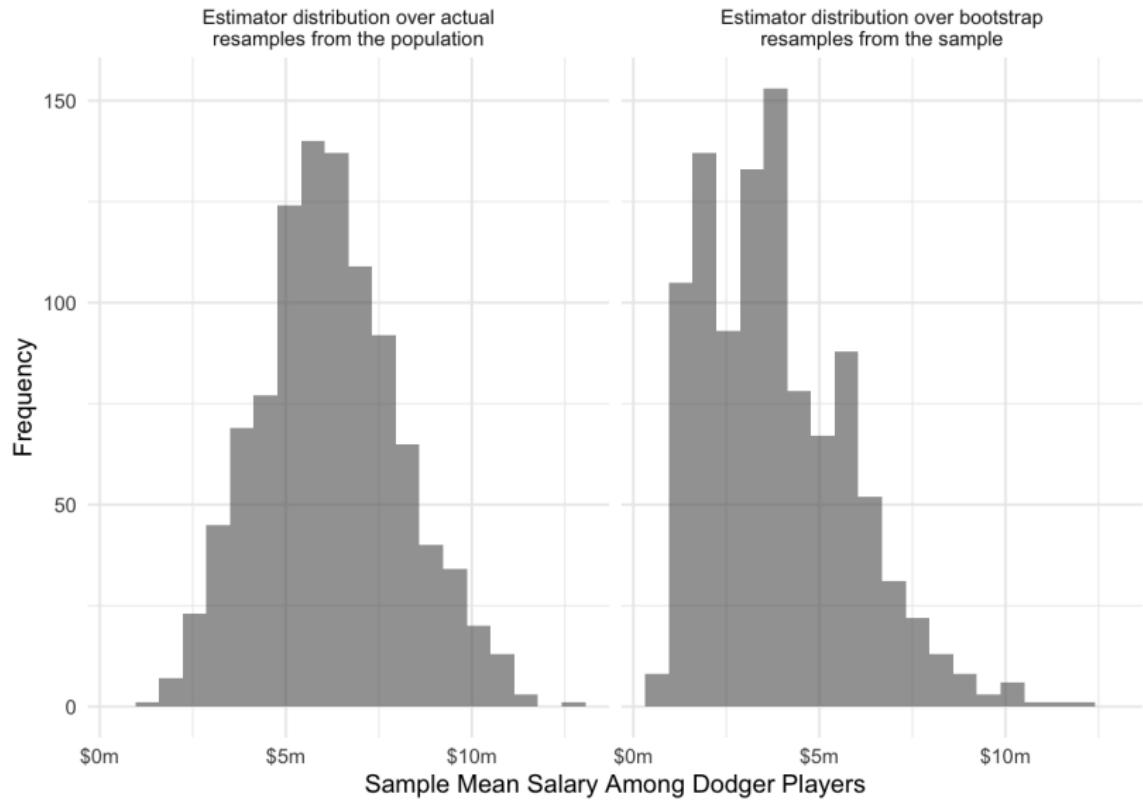
```
# A tibble: 10 × 3
  player              team      salary
  <chr>              <chr>      <dbl>
1 Barnes, Austin     L.A. Dodgers 3500000
2 Reyes, Alex*      L.A. Dodgers 1100000
3 Betts, Mookie     L.A. Dodgers 21158692
4 Vargas, Miguel    L.A. Dodgers 722500
5 May, Dustin       L.A. Dodgers 1675000
6 Bickford, Phil    L.A. Dodgers 740000
7 Jackson, Andre    L.A. Dodgers 722500
8 Thompson, Trayce  L.A. Dodgers 1450000
9 Pepiot, Ryan*     L.A. Dodgers 722500
10 Peralta, David   L.A. Dodgers 6500000
```

Bootstrap sample

```
sample |>  
  slice_sample(prop = 1, replace = TRUE)
```

```
# A tibble: 10 × 3  
  player           team      salary  
  <chr>          <chr>     <dbl>  
1 Betts, Mookie  L.A. Dodgers 21158692  
2 Peralta, David L.A. Dodgers  65000000  
3 Barnes, Austin L.A. Dodgers  35000000  
4 Pepiot, Ryan*  L.A. Dodgers  722500  
5 Jackson, Andre L.A. Dodgers  722500  
6 May, Dustin    L.A. Dodgers  1675000  
7 Reyes, Alex*   L.A. Dodgers  1100000  
8 May, Dustin    L.A. Dodgers  1675000  
9 Vargas, Miguel L.A. Dodgers  722500  
10 Peralta, David L.A. Dodgers 65000000
```

Bootstrap: Many sample estimates



Bootstrap standard errors

Bootstrap standard errors

Goal: Standard deviation across hypothetical sample estimates

Bootstrap standard errors

Goal: Standard deviation across hypothetical sample estimates

Estimator: Standard deviation across bootstrap estimates

$$\widehat{\text{SD}}(s) = \frac{1}{B-1} \sum_{r=1}^B \left(s(\text{data}_r^*) - s(\text{data}_\bullet^*) \right)^2$$

Bootstrap confidence intervals

Two (of many) approaches

- ▶ normal approximation
- ▶ percentile method

Bootstrap confidence intervals

Normal approximation

Point estimate + Bootstrap Standard Error + Normal
Approximation

Bootstrap confidence intervals

Normal approximation

Point estimate + Bootstrap Standard Error + Normal Approximation

$$s(\text{data}) \pm \Phi^{-1}(0.975) \text{SD}(s(\text{data}^*))$$

```
estimator(sample) + c(-1,1) * qnorm(.975) * sd(bootstrap_estimates)
```

```
[1] -22353.11 7680591.51
```

Bootstrap confidence intervals

Percentile method

Point estimate + Bootstrap Distribution + Percentiles

Bootstrap confidence intervals

Percentile method

Point estimate + Bootstrap Distribution + Percentiles

```
quantile(bootstrap_estimates, probs = c(.025, .975))
```

```
2.5%    97.5%
1103406 8216408
```

(requires a larger number of bootstrap samples)

Bootstrap discussion: Causal outcome model

Suppose a researcher carries out the following procedure.

1. Sample n units from the population
2. Learn an algorithm $\hat{f} : \{A, \vec{X}\} \rightarrow Y$ to minimize squared error
3. Predict the average causal effect

$$\hat{\tau} = \frac{1}{n} \sum_{i=1}^n \left(\hat{f}(A = 1, \vec{X} = \vec{x}_i) - \hat{f}(A = 0, \vec{X} = \vec{x}_i) \right)$$

How would you make a bootstrap confidence interval for $\hat{\tau}$?

Bootstrap discussion: Causal outcome model

Suppose a researcher carries out the following procedure.

1. Sample n units from the population
2. Learn an algorithm $\hat{f} : \{A, \vec{X}\} \rightarrow Y$ to minimize squared error
3. Predict the average causal effect

$$\hat{\tau} = \frac{1}{n} \sum_{i=1}^n \left(\hat{f}(A = 1, \vec{X} = \vec{x}_i) - \hat{f}(A = 0, \vec{X} = \vec{x}_i) \right)$$

How would you make a bootstrap confidence interval for $\hat{\tau}$?

Bootstrap discussion: Causal outcome model

For each replicate $r = 1, \dots, 10,000$,

1. Draw bootstrap sample data *_r
2. Estimate $\hat{\tau}_r^*$

Produces many estimates $\hat{\tau}_1^*, \dots, \hat{\tau}_{10,000}^*$

Report the 2.5 and 97.5 percentiles of those

Complex samples

- ▶ stratified
- ▶ clustered
- ▶ beyond

Simple random sample

Sample 150 players at random.
(standard bootstrap applies)

Stratified sample

Sample 10 players on each of 30 teams

- ▶ Why doesn't the simple bootstrap mimic this sampling variability well?

Stratified sample

Sample 10 players on each of 30 teams

- ▶ Why doesn't the simple bootstrap mimic this sampling variability well?

Solution: Stratified bootstrap

- ▶ Take resamples within groups
- ▶ Preserve distribution across groups

Clustered sample

Sample 10 teams. Record data on all players in sampled teams.

- ▶ Why doesn't the simple bootstrap mimic this sampling variability well?

Clustered sample

Sample 10 teams. Record data on all players in sampled teams.

- ▶ Why doesn't the simple bootstrap mimic this sampling variability well?

Solution: Cluster bootstrap

- ▶ Bootstrap the groups

Complex survey sample

- ▶ Often stratified and clustered, in multiple stages
- ▶ Strata and clusters are often restricted geographic identifiers

Complex survey sample: Replicate weights

	name	weight	employed	repwt1	repwt2	repwt3
1	Luis	4	1	3	5	3
2	William	1	0	1	2	2
3	Susan	1	0	3	1	1
4	Ayesha	4	1	5	3	4

- ▶ Point estimate $\hat{\tau}$
- ▶ Replicate estimates $\hat{\tau}^1, \hat{\tau}^2, \dots$

Complex survey sample: Replicate weights

Re-aggregate as directed by survey documentation.

Current Population Survey (example with [documentation](#))

Complex survey sample: Replicate weights

Re-aggregate as directed by survey documentation.

Current Population Survey (example with [documentation](#))

$$\text{StandardError}(\hat{\tau}) = \sqrt{\frac{4}{160} \sum_{r=1}^{160} (\hat{\tau}_r^* - \hat{\tau})^2}$$

Words of Warning

The bootstrap makes inference easy, but there are catches.

- ▶ biased estimator
- ▶ estimator is something like $\max(\bar{y})$

Words of Warning

The bootstrap makes inference easy, but there are catches.

- ▶ biased estimator
 - ▶ not centered correctly → undercoverage
- ▶ estimator is something like $\max(\bar{y})$

Words of Warning

The bootstrap makes inference easy, but there are catches.

- ▶ biased estimator
 - ▶ not centered correctly → undercoverage
- ▶ estimator is something like $\max(\vec{y})$
 - ▶ $\max(\vec{y}^*)$ never above $\max(\vec{y})$

Words of Warning

The bootstrap makes inference easy, but there are catches.

- ▶ biased estimator
 - ▶ not centered correctly → undercoverage
- ▶ estimator is something like $\max(\vec{y})$
 - ▶ $\max(\vec{y}^*)$ never above $\max(\vec{y})$
 - ▶ depends heavily on a particular point

Learning goals for today

At the end of class, you will be able to:

1. assess statistical uncertainty (sample-to-sample variability) by a computational procedure