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Learning goals for today

At the end of class, you will be able to:

1. assess statistical uncertainty (sample-to-sample variability) by
a computational procedure
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A motivating problem

» Sample of 10 Dodger players
» Mean salary = $3.8 million

How much do you trust this as an estimate of the population mean
salary?

Resampling for Inference  Classical Inference Bootstrap Discussion Complex Samples Words of Warning



# A tibble: 3 x 2

“Salary Among Sampled Dodgers’®

<chr>
1 sample_mean
2 sample_standard_deviation
3 sample_size
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Estimator: Sample mean
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How statistically uncertain is [i?
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Standard error of the sample mean
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A standard error captures sample-to-sample variability of
the sample mean (second plot)
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Confidence interval
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Confidence interval

A 95% confidence interval is a range (fiLower, lUpper) Such that

P(ﬁLower <p< /IlUpper) =.95

You may know this formula:

fi £ 1.96 x SD())

where 1.96 comes from the properties of the normal distribution.
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Confidence intervals derived by math
Coverage in simulation: 91% contain the population parameter
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Confidence Intervals in 1,000 Samples
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Replacing math with computation: The bootstrap
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How our estimate comes to be

F — data — s(data)
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How our estimate comes to be

F — data — s(data)

1. The world produces data
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How our estimate comes to be

F — data — s(data)

1. The world produces data

2. Our estimator function s() converts data to an estimate

estimator <— function(data) {
data |>
summarize(estimate = mean(salary)) |>
pull(estimate)
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The bootstrap idea

F — data — s(data)
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The bootstrap idea

F — data — s(data)

F — data® — s(data*)
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The bootstrap idea

F — data — s(data)

F — data® — s(data*)

» F is the true distribution of data in the population

> Fisa plug-in estimator: our empirical data distribution
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The bootstrap idea

1. Generate data* by sampling with replacement from data
2. Apply the estimator function
3. Repeat (1-2) many times. Get a distribution.
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Original sample

# A tibble: 10
player
<chr>
Barnes, Aus

Vargas, Mig
May, Dustin

Jackson, An
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Pepiot, Rya
Peralta, Da

Jany
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Reyes, Alexx
Betts, Mookie

Bickford, Phil

Thompson, Trayce

x 3

team
<chr>
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Classical Inference

Dodgers
Dodgers
Dodgers
Dodgers
Dodgers
Dodgers
Dodgers
Dodgers
Dodgers
Dodgers

Bootstrap

salary
<db1>
3500000
1100000
21158692
722500
1675000
740000
722500
1450000
722500
6500000
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Bootstrap sample

sample |>
slice_sample(prop = 1, replace = TRUE)

# A tibble: 10 x 3

player team salary

<chr> <chr> <db1>
1 Betts, Mookie L.A. Dodgers 21158692
2 Peralta, David L.A. Dodgers 6500000
3 Barnes, Austin L.A. Dodgers 3500000
4 Pepiot, Ryanx L.A. Dodgers 722500
5 Jackson, Andre L.A. Dodgers 722500
6 May, Dustin L.A. Dodgers 1675000
7 Reyes, Alexx L.A. Dodgers 1100000
8 May, Dustin L.A. Dodgers 1675000
9 Vargas, Miguel L.A. Dodgers 722500
10 Peralta, David L.A. Dodgers 6500000
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Bootstrap: Many sample estimates

Estimator distribution over actual Estimator distribution over bootstrap
resamples from the population resamples from the sample
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Bootstrap standard errors
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Bootstrap standard errors

Goal: Standard deviation across hypothetical sample estimates
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Bootstrap standard errors

Goal: Standard deviation across hypothetical sample estimates
Estimator: Standard deviation across bootstrap estimates

B
SD(s) = —— <5(data’r‘) - s(datai)>2

r=1
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Bootstrap confidence intervals

Two (of many) approaches
» normal approximation

» percentile method
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Bootstrap confidence intervals

Normal approximation

Point estimate 4+ Bootstrap Standard Error + Normal
Approximation
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Bootstrap confidence intervals

Normal approximation

Point estimate 4+ Bootstrap Standard Error + Normal
Approximation

s(data) &= & '(.975)SD(s(data*))
estimator(sample) + c(-1,1) * gnorm(.975) * sd(bootstrap_estimates)

[1] -22353.11 7680591.51
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Bootstrap confidence intervals

Percentile method

Point estimate + Bootstrap Distribution + Percentiles
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Bootstrap confidence intervals

Percentile method

Point estimate + Bootstrap Distribution + Percentiles

quantile(bootstrap_estimates, probs = c(.025, .975))

2.5% 97.5%
1103406 8216408

(requires a larger number of bootstrap samples)
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Bootstrap discussion: Causal outcome model

Suppose a researcher carries out the following procedure.
1. Sample n units from the population
2. Learn an algorithm 7 : {A, X} — Y to minimize squared error

3. Predict the average causal effect

oIS (fa= 1K = 5) - FA=0.X = %)
i=1

How would you make a bootstrap confidence interval for 77
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Bootstrap discussion: Causal outcome model

Suppose a researcher carries out the following procedure.
1. Sample n units from the population
2. Learn an algorithm 7 : {A, X} — Y to minimize squared error

3. Predict the average causal effect

oIS (fa= 1K = 5) - FA=0.X = %)
i=1

How would you make a bootstrap confidence interval for 77
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Bootstrap discussion: Causal outcome model

For each replicate r = 1,...,10,000,
1. Draw bootstrap sample data}
2. Estimate 7/

Produces many estimates 77, ..., 715 g00
Report the 2.5 and 97.5 percentiles of those

Resampling for Inference  Classical Inference Bootstrap Discussion

Complex Samples

Words of Warning



Complex samples

» stratified
» clustered
» beyond
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Simple random sample

Sample 150 players at random.
(standard bootstrap applies)
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Stratified sample

Sample 10 players on each of 30 teams

» Why doesn’t the simple bootstrap mimic this sampling
variability well?
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Stratified sample

Sample 10 players on each of 30 teams

» Why doesn’t the simple bootstrap mimic this sampling
variability well?

Solution: Stratified bootstrap
» Take resamples within groups

» Preserve distribution across groups
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Clustered sample

Sample 10 teams. Record data on all players in sampled teams.

» Why doesn’t the simple bootstrap mimic this sampling
variability well?
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Clustered sample

Sample 10 teams. Record data on all players in sampled teams.

» Why doesn’t the simple bootstrap mimic this sampling
variability well?

Solution: Cluster bootstrap

» Bootstrap the groups
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Complex survey sample

» Often stratified and clustered, in multiple stages

» Strata and clusters are often restricted geographic identifiers
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Complex survey sample: Replicate weights

name weight employed repwtl repwt2 repwt3

1 Luis
2 William
3 Susan
4 Ayesha

4

1
1
4

» Point estimate 7

» Replicate estimates 71, 7
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Complex survey sample: Replicate weights

Re-aggregate as directed by survey documentation.
Current Population Survey (example with documentation)
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https://cps.ipums.org/cps/repwt.shtml

Complex survey sample: Replicate weights

Re-aggregate as directed by survey documentation.
Current Population Survey (example with documentation)

160

4
StandardError(7) = 6o Z (5 — %)2
r=1
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Words of Warning

The bootstrap makes inference easy, but there are catches.
» biased estimator

» estimator is something like max(y)
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Words of Warning

The bootstrap makes inference easy, but there are catches.
» biased estimator

» not centered correctly — undercoverage
» estimator is something like max(y)
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Words of Warning

The bootstrap makes inference easy, but there are catches.

» biased estimator
» not centered correctly — undercoverage

» estimator is something like max(y)
» max(y™*) never above max(y)

Resampling for Inference  Classical Inference Bootstrap Discussion Complex Samples Words of Warning



Words of Warning

The bootstrap makes inference easy, but there are catches.

» biased estimator
» not centered correctly — undercoverage
» estimator is something like max(y)

» max(y™*) never above max(y)
» depends heavily on a particular point
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Learning goals for today

At the end of class, you will be able to:

1. assess statistical uncertainty (sample-to-sample variability) by
a computational procedure
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