

Defining causal effects

UCLA SOCIOl 114: Social Data Science
Winter 2025

28 Jan 2025

Learning goals for today

By the end of class, you will be able to

- ▶ explain the fundamental problem of causal inference and the need for causal arguments
- ▶ define potential outcomes
- ▶ recall mathematical concepts from probability
 - ▶ random variables
 - ▶ expectation
 - ▶ conditional expectation

Causal claims hinge on arguments, not on data

Left photo: By Fernando Frazão/Agência Brasil -

http://agenciabrasil.ebc.com.br/sites/_agenciabrasil2013/files/fotos/1035034-_mg_0802_04.08.16.jpg, CC BY 3.0 br, <https://commons.wikimedia.org/w/index.php?curid=50548410>

Right photo: By Agencia Brasil Fotografias - EUA levam ouro na ginástica artística feminina; Brasil fica em 8 lugar, CC BY 2.0, <https://commons.wikimedia.org/w/index.php?curid=50584648>

Causal claims hinge on arguments, not on data

1. Statistical evidence

- Simone Biles swung on the uneven bars. She won a gold medal.

Causal claims hinge on arguments, not on data

1. Statistical evidence

- ▶ Simone Biles swung on the uneven bars. She won a gold medal.
- ▶ I did not swing on the uneven bars. I did not win a gold medal.

Causal claims hinge on arguments, not on data

1. Statistical evidence

- ▶ Simone Biles swung on the uneven bars. She won a gold medal.
- ▶ I did not swing on the uneven bars. I did not win a gold medal.

2. Possible causal claim

- ▶ Swinging on the uneven bars causes a person to win a gold medal.

Causal claims hinge on arguments, not on data

1. Statistical evidence

- ▶ Simone Biles swung on the uneven bars. She won a gold medal.
- ▶ I did not swing on the uneven bars. I did not win a gold medal.

2. Possible causal claim

- ▶ Swinging on the uneven bars causes a person to win a gold medal.

	Do you win gold if you:		Causal effect
	Swing	Do not swing	of swinging
Simone Biles	Yes (1)	?	?
Ian	?	No (0)	?

Causal claims hinge on arguments, not on data

1. Statistical evidence

- ▶ Simone Biles swung on the uneven bars. She won a gold medal.
- ▶ I did not swing on the uneven bars. I did not win a gold medal.

2. Possible causal claim

- ▶ Swinging on the uneven bars causes a person to win a gold medal.

	Do you win gold if you: Swing	Do not swing	Causal effect of swinging
Simone Biles	Yes (1)	No (0)	?
Ian	?	No (0)	?

Causal claims hinge on arguments, not on data

1. Statistical evidence

- ▶ Simone Biles swung on the uneven bars. She won a gold medal.
- ▶ I did not swing on the uneven bars. I did not win a gold medal.

2. Possible causal claim

- ▶ Swinging on the uneven bars causes a person to win a gold medal.

	Do you win gold if you: Swing	Do not swing	Causal effect of swinging
Simone Biles	Yes (1)	No (0)	+1
Ian	?	No (0)	?

Causal claims hinge on arguments, not on data

1. Statistical evidence

- ▶ Simone Biles swung on the uneven bars. She won a gold medal.
- ▶ I did not swing on the uneven bars. I did not win a gold medal.

2. Possible causal claim

- ▶ Swinging on the uneven bars causes a person to win a gold medal.

	Do you win gold if you: Swing	Do not swing	Causal effect of swinging
Simone Biles	Yes (1)	No (0)	+1
Ian	No (0)	No (0)	?

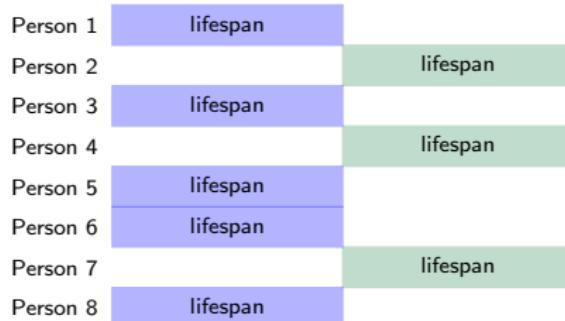
Causal claims hinge on arguments, not on data

1. Statistical evidence

- ▶ Simone Biles swung on the uneven bars. She won a gold medal.
- ▶ I did not swing on the uneven bars. I did not win a gold medal.

2. Possible causal claim

- ▶ Swinging on the uneven bars causes a person to win a gold medal.


	Do you win gold if you: Swing	Do not swing	Causal effect of swinging
Simone Biles	Yes (1)	No (0)	+1
Ian	No (0)	No (0)	0

Fundamental problem of causal inference

Holland 1986

Descriptive evidence

Outcome
under
Mediterranean
diet

Outcome
under
standard
diet

Fundamental problem of causal inference

Holland 1986

Descriptive evidence

Causal claim

Person 1	lifespan	
Person 2		lifespan
Person 3	lifespan	
Person 4		lifespan
Person 5	lifespan	
Person 6	lifespan	
Person 7		lifespan
Person 8	lifespan	

Outcome
under
Mediterranean
diet

lifespan	lifespan

Outcome
under
Mediterranean
diet

Fundamental problem of causal inference

Holland 1986

Descriptive evidence

Causal claim

Person 1	lifespan	missing
Person 2	missing	lifespan
Person 3	lifespan	missing
Person 4	missing	lifespan
Person 5	lifespan	missing
Person 6	lifespan	missing
Person 7	missing	lifespan
Person 8	lifespan	missing

Outcome
under
Mediterranean
diet

lifespan	lifespan

Outcome
under
Mediterranean
diet

Fundamental problem of causal inference

Holland 1986

Descriptive evidence

average lifespan — average lifespan

Causal claim

average lifespan — average lifespan

Causal inference is a **missing data** problem

Person 1	lifespan	missing
Person 2	missing	lifespan
Person 3	lifespan	missing
Person 4	missing	lifespan
Person 5	lifespan	missing
Person 6	lifespan	missing
Person 7	missing	lifespan
Person 8	lifespan	missing

Outcome
under
Mediterranean
diet

lifespan	lifespan

Outcome
under
Mediterranean
diet

Mathematical notation: Potential outcomes

Mathematical notation: Potential outcomes

Mathematical notation: Potential outcomes

Y_i Outcome
 A_i Treatment

Whether person i survived
Whether person i ate a Mediterranean diet

Mathematical notation: Potential outcomes

Y_i	Outcome	Whether person i survived
A_i	Treatment	Whether person i ate a Mediterranean diet
Y_i^a	Potential Outcome	Outcome person i would realize if assigned to treatment value a

Mathematical notation: Potential outcomes

Y_i	Outcome	Whether person i survived
A_i	Treatment	Whether person i ate a Mediterranean diet
Y_i^a	Potential Outcome	Outcome person i would realize if assigned to treatment value a

Examples:

$$Y_{\text{Ian}} = \text{survived}$$

Ian survived

Mathematical notation: Potential outcomes

Y_i	Outcome	Whether person i survived
A_i	Treatment	Whether person i ate a Mediterranean diet
Y_i^a	Potential Outcome	Outcome person i would realize if assigned to treatment value a

Examples:

$$Y_{\text{Ian}} = \text{survived}$$

Ian survived

$$A_{\text{Ian}} = \text{MediterraneanDiet}$$

Ian ate a Mediterranean diet

Mathematical notation: Potential outcomes

Y_i	Outcome	Whether person i survived
A_i	Treatment	Whether person i ate a Mediterranean diet
Y_i^a	Potential Outcome	Outcome person i would realize if assigned to treatment value a

Examples:

Y_{Ian} = survived	Ian survived
A_{Ian} = MediterraneanDiet	Ian ate a Mediterranean diet
$Y_{\text{Ian}}^{\text{MediterraneanDiet}}$ = survived	Ian would survive on a Mediterranean diet

Mathematical notation: Potential outcomes

Y_i	Outcome	Whether person i survived
A_i	Treatment	Whether person i ate a Mediterranean diet
Y_i^a	Potential Outcome	Outcome person i would realize if assigned to treatment value a

Examples:

Y_{Ian} = survived	Ian survived
A_{Ian} = MediterraneanDiet	Ian ate a Mediterranean diet
$Y_{\text{Ian}}^{\text{MediterraneanDiet}}$ = survived	Ian would survive on a Mediterranean diet
$Y_{\text{Ian}}^{\text{StandardDiet}}$ = died	Ian would die on a standard diet

Mathematical notation: Potential outcomes

Y_i	Outcome	Whether person i survived
A_i	Treatment	Whether person i ate a Mediterranean diet
Y_i^a	Potential Outcome	Outcome person i would realize if assigned to treatment value a

Examples:

Y_{Ian} = survived	Ian survived
A_{Ian} = MediterraneanDiet	Ian ate a Mediterranean diet
$Y_{\text{Ian}}^{\text{MediterraneanDiet}}$ = survived	Ian would survive on a Mediterranean diet
$Y_{\text{Ian}}^{\text{StandardDiet}}$ = died	Ian would die on a standard diet

Discuss.

Which potential outcome is observed?

Which is counterfactual?

The consistency assumption

The consistency assumption

$Y_i^{\text{MediterraneanDiet}}$

$Y_i^{\text{StandardDiet}}$

Potential Outcomes

The consistency assumption

The consistency assumption

Consistency Assumption

$$Y_i^{A_i} = Y_i$$

$Y_i^{\text{MediterraneanDiet}}$

$Y_i^{\text{StandardDiet}}$

Potential Outcomes

Y_i

Factual Outcomes

Mathematical notation: Potential outcomes are fixed

A person's potential outcome is a **fixed quantity**

Mathematical notation: Potential outcomes are fixed

A person's potential outcome is a **fixed quantity**

Y_{lan} ^{MediterraneanDiet} = survived

Mathematical notation: Potential outcomes are fixed

A person's potential outcome is a **fixed quantity**

$Y_{\text{Ian}}^{\text{MediterraneanDiet}} = \text{survived}$

The outcome for a random person is a **random variable**

Mathematical notation: Potential outcomes are fixed

A person's potential outcome is a **fixed quantity**

$Y_{\text{Ian}}^{\text{MediterraneanDiet}} = \text{survived}$

The outcome for a random person is a **random variable**

- ▶ Draw a random person from the population

Mathematical notation: Potential outcomes are fixed

A person's potential outcome is a **fixed quantity**

$$Y_{\text{ian}}^{\text{MediterraneanDiet}} = \text{survived}$$

The outcome for a random person is a **random variable**

- ▶ Draw a random person from the population
- ▶ Assign them a Mediterranean diet

Mathematical notation: Potential outcomes are fixed

A person's potential outcome is a **fixed quantity**

$$Y_{\text{Ian}}^{\text{MediterraneanDiet}} = \text{survived}$$

The outcome for a random person is a **random variable**

- ▶ Draw a random person from the population
- ▶ Assign them a Mediterranean diet
- ▶ The outcome $Y^{\text{MediterraneanDiet}}$ is a random variable:
 - ▶ takes the value survived if we randomly sample some people
 - ▶ takes the value died if we randomly sample others

Mathematical notation: Potential outcomes are fixed

A person's potential outcome is a **fixed quantity**

$$Y_{\text{Ian}}^{\text{MediterraneanDiet}} = \text{survived}$$

The outcome for a random person is a **random variable**

- ▶ Draw a random person from the population
- ▶ Assign them a Mediterranean diet
- ▶ The outcome $Y^{\text{MediterraneanDiet}}$ is a random variable:
 - ▶ takes the value survived if we randomly sample some people
 - ▶ takes the value died if we randomly sample others

Check for understanding:

Does it make sense to write $V(Y_i^a)$? How about $V(Y^a)$

Notation: Expectation operator

The **expectation operator** $E()$ denotes the population mean

$$E(Y^a) = \frac{1}{n} \sum_{i=1}^n Y_i^a$$

The quantity Y^a inside the expectation must be a random variable

Notation: Expectation operator

The **expectation operator** $E()$ denotes the population mean

$$E(Y^a) = \frac{1}{n} \sum_{i=1}^n Y_i^a$$

The quantity Y^a inside the expectation must be a random variable

A **conditional expectation** is denoted with a vertical bar

$$E(Y | A = a) = \frac{1}{n_a} \sum_{i: A_i = a} Y_i$$

Practice: How would you say this in English?

We might wonder how a person's earnings relate to whether they hold a college degree

1. $E(\text{Earnings} \mid \text{Degree} = \text{TRUE}) > E(\text{Earnings} \mid \text{Degree} = \text{FALSE})$
2. $E(\text{Earnings}^{\text{Degree}=\text{TRUE}}) > E(\text{Earnings}^{\text{Degree}=\text{FALSE}})$

Practice: How would you say this in English?

We might wonder how a person's earnings relate to whether they hold a college degree

1. $E(\text{Earnings} \mid \text{Degree} = \text{TRUE}) > E(\text{Earnings} \mid \text{Degree} = \text{FALSE})$
 - ▶ Average earnings are higher among those with college degrees
2. $E(\text{Earnings}^{\text{Degree}=\text{TRUE}}) > E(\text{Earnings}^{\text{Degree}=\text{FALSE}})$

Practice: How would you say this in English?

We might wonder how a person's earnings relate to whether they hold a college degree

1. $E(\text{Earnings} \mid \text{Degree} = \text{TRUE}) > E(\text{Earnings} \mid \text{Degree} = \text{FALSE})$
 - ▶ Average earnings are higher among those with college degrees
2. $E(\text{Earnings}^{\text{Degree}=\text{TRUE}}) > E(\text{Earnings}^{\text{Degree}=\text{FALSE}})$
 - ▶ On average, a degree causes higher earnings

Practice: How would you write this in math?

1. On average, students who do the homework learn more than those who don't
2. On average, doing the homework causes more learning

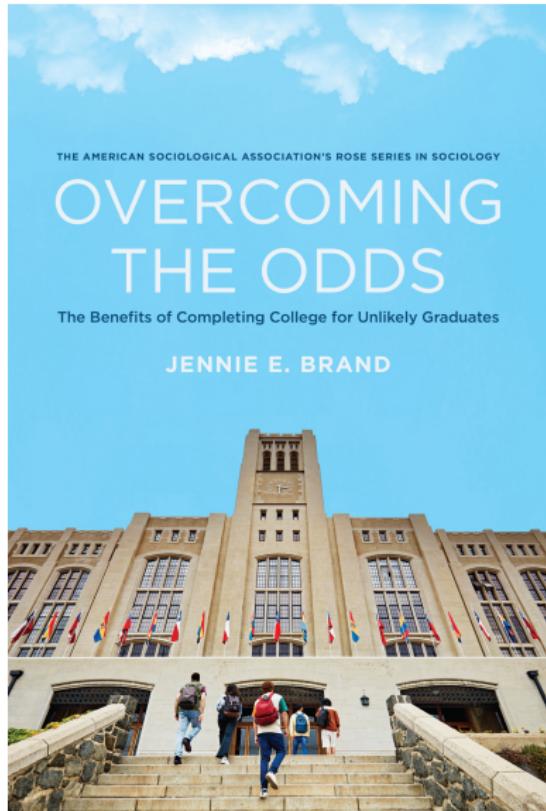
Practice: How would you write this in math?

1. On average, students who do the homework learn more than those who don't

$$E(\text{Learning} \mid \text{HW} = \text{TRUE}) > E(\text{Learning} \mid \text{HW} = \text{FALSE})$$

2. On average, doing the homework causes more learning

Practice: How would you write this in math?


1. On average, students who do the homework learn more than those who don't

$$E(\text{Learning} \mid \text{HW} = \text{TRUE}) > E(\text{Learning} \mid \text{HW} = \text{FALSE})$$

2. On average, doing the homework causes more learning

$$E(\text{Learning}^{\text{HW}=\text{TRUE}}) > E(\text{Learning}^{\text{HW}=\text{FALSE}})$$

An example about inequality

Americans' education in 1900

(Brand 2023 p. 6)

- ▶ 6% graduated from high school
- ▶ 3% graduated from college

Figure 1.1 High School and Four-Year College Completion Rates, 1940–2020

Source: U.S. Census Bureau, March Current Population Survey and Annual Social and Economic Supplement to the Current Population Survey.

(Brand 2023)

Why did education expand?

Why did education expand?

- ▶ Public investment in college
 - ▶ Morrill Act (1862) sold land to establish colleges
 - ▶ G.I. Bill (1944) funded veterans' college

Why did education expand?

- ▶ Public investment in college
 - ▶ Morrill Act (1862) sold land to establish colleges
 - ▶ G.I. Bill (1944) funded veterans' college
- ▶ Rising labor market demand for skills

We would like to know whether **college pays off**:
does it have positive effects on desired outcomes?

Mathematical notation for two types of claims

Mathematical notation for two types of claims

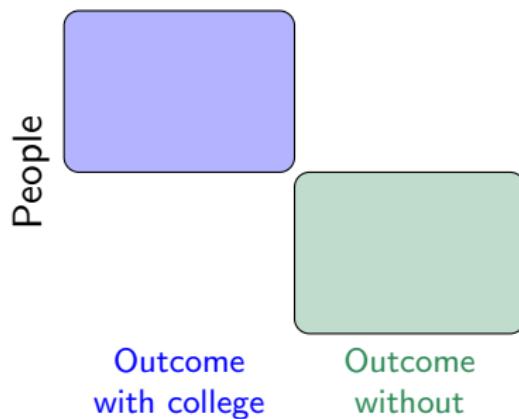
People with
college degrees
earn more

A college degree
causes
higher earnings

Mathematical notation for two types of claims

People with
college degrees
earn more

A college degree
causes
higher earnings

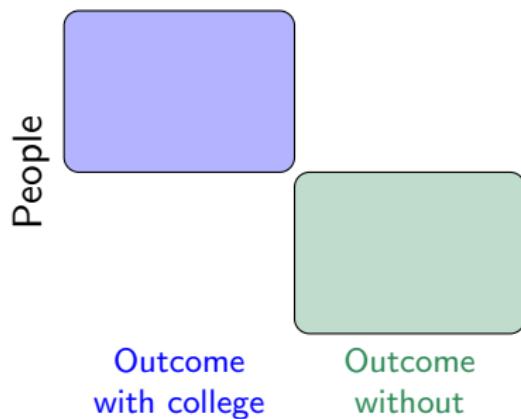

Two sets of people
Two treatments

Mathematical notation for two types of claims

People with
college degrees
earn more

A college degree
causes
higher earnings

Two sets of people
Two treatments

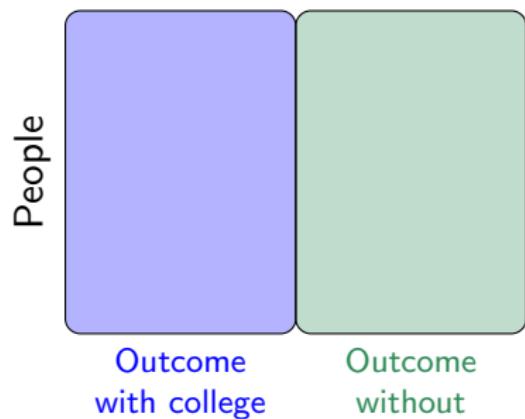
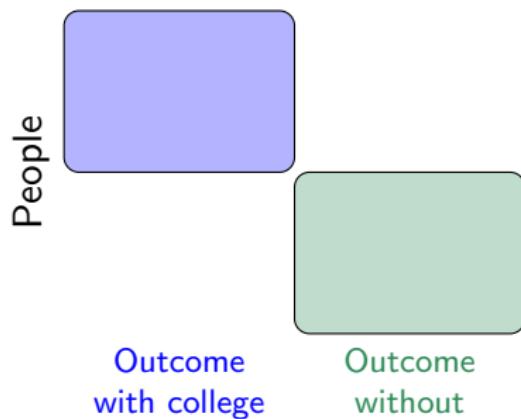

Mathematical notation for two types of claims

People with
college degrees
earn more

A college degree
causes
higher earnings

Two sets of people
Two treatments

Same people
Two treatments

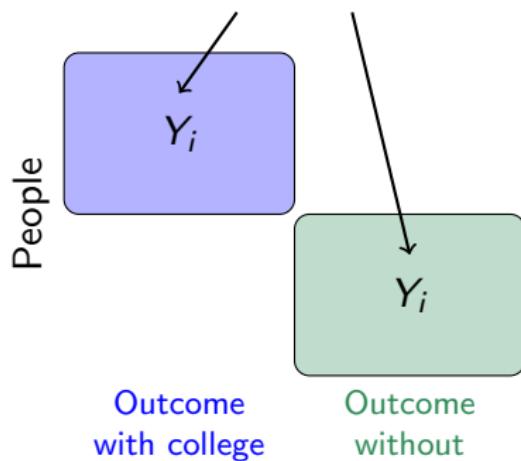


Mathematical notation for two types of claims

People with
college degrees
earn more

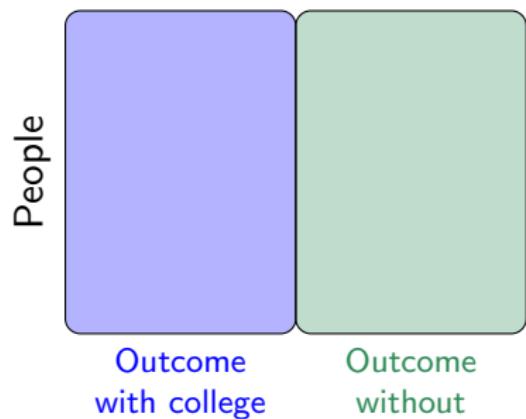
A college degree
causes
higher earnings

Two sets of people
Two treatments

Same people
Two treatments

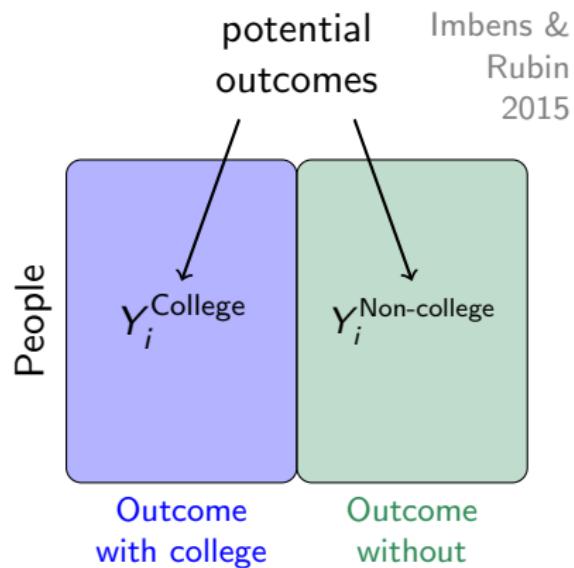
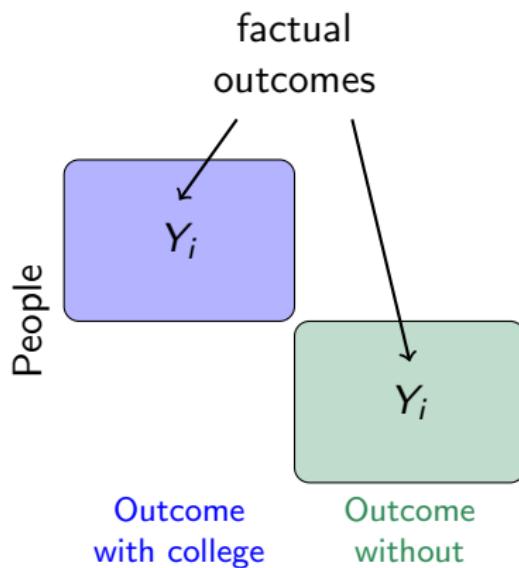


Mathematical notation for two types of claims


People with
college degrees
earn more

A college degree
causes
higher earnings

factual
outcomes



Same people
Two treatments

Mathematical notation for two types of claims

People with
college degrees
earn more

A college degree
causes
higher earnings

The fundamental problem of causal inference

The data

Each Row is a Person	Y_{Nick} College	
	Y_{William} College	
		Y_{Rich} Non-college
	Y_{Diego} College	
		Y_{Javier} Non-college
		$Y_{\text{Jesús}}$ Non-college
Outcome under treatment		Outcome under control

Holland 1986

The fundamental problem of causal inference

The data

Each Row is a Person	Y_{Nick} College	
	Y_{William} College	Y_{Rich} Non-college
	Y_{Diego} College	Y_{Javier} Non-college
		$Y_{\text{Jesús}}$ Non-college
	Outcome under treatment	Outcome under control

The claim

Y_{Nick} College	\leftrightarrow	Y_{Nick} Non-college
Y_{William} College	\leftrightarrow	Y_{William} Non-college
Y_{Rich} College	\leftrightarrow	Y_{Rich} Non-college
Y_{Diego} College	\leftrightarrow	Y_{Diego} Non-college
Y_{Javier} College	\leftrightarrow	Y_{Javier} Non-college
$Y_{\text{Jesús}}$ College	\leftrightarrow	$Y_{\text{Jesús}}$ Non-college
Outcome under treatment		Outcome under control

Holland 1986

The fundamental problem of causal inference

The data

Each Row is a Person	$Y_{\text{College Nick}}$?
	$Y_{\text{College William}}$?
	?	$Y_{\text{Non-college Rich}}$
	$Y_{\text{College Diego}}$?
	?	$Y_{\text{Non-college Javier}}$
	?	$Y_{\text{Non-college Jesús}}$
	Outcome under treatment	Outcome under control

The claim

$Y_{\text{College Nick}}$	\leftrightarrow	$Y_{\text{Non-college Nick}}$
$Y_{\text{College William}}$	\leftrightarrow	$Y_{\text{Non-college William}}$
$Y_{\text{College Rich}}$	\leftrightarrow	$Y_{\text{Non-college Rich}}$
$Y_{\text{College Diego}}$	\leftrightarrow	$Y_{\text{Non-college Diego}}$
$Y_{\text{College Javier}}$	\leftrightarrow	$Y_{\text{Non-college Javier}}$
$Y_{\text{College Jesús}}$	\leftrightarrow	$Y_{\text{Non-college Jesús}}$
Outcome under treatment		Outcome under control

Counterfactuals are **not observed**

Holland 1986

Preview: Solving the problem by assumptions

The data

$Y^{\text{College}}_{\text{Nick}}$?
$Y^{\text{College}}_{\text{William}}$?
?	$Y^{\text{Non-college}}_{\text{Rich}}$
$Y^{\text{College}}_{\text{Diego}}$?
?	$Y^{\text{Non-college}}_{\text{Javier}}$
?	$Y^{\text{Non-college}}_{\text{Jesús}}$

Outcome under treatment

Outcome under control

The claim

$Y^{\text{College}}_{\text{Nick}}$	\leftrightarrow	$Y^{\text{Non-college}}_{\text{Nick}}$
$Y^{\text{College}}_{\text{William}}$	\leftrightarrow	$Y^{\text{Non-college}}_{\text{William}}$
$Y^{\text{College}}_{\text{Rich}}$	\leftrightarrow	$Y^{\text{Non-college}}_{\text{Rich}}$
$Y^{\text{College}}_{\text{Diego}}$	\leftrightarrow	$Y^{\text{Non-college}}_{\text{Diego}}$
$Y^{\text{College}}_{\text{Javier}}$	\leftrightarrow	$Y^{\text{Non-college}}_{\text{Javier}}$
$Y^{\text{College}}_{\text{Jesús}}$	\leftrightarrow	$Y^{\text{Non-college}}_{\text{Jesús}}$

Outcome under treatment

Outcome under control

Preview: Solving the problem by assumptions

The data

$Y^{\text{College}}_{\text{Nick}}$?
$Y^{\text{College}}_{\text{William}}$?
?	$Y^{\text{Non-college}}_{\text{Rich}}$
$Y^{\text{College}}_{\text{Diego}}$?
?	$Y^{\text{Non-college}}_{\text{Javier}}$
?	$Y^{\text{Non-college}}_{\text{Jesús}}$

Outcome
under
treatment

Outcome
under
control

The claim

$Y^{\text{College}}_{\text{Nick}}$	\leftrightarrow	$Y^{\text{Non-college}}_{\text{Nick}}$
$Y^{\text{College}}_{\text{William}}$	\leftrightarrow	$Y^{\text{Non-college}}_{\text{William}}$
$Y^{\text{College}}_{\text{Rich}}$	\leftrightarrow	$Y^{\text{Non-college}}_{\text{Rich}}$
$Y^{\text{College}}_{\text{Diego}}$	\leftrightarrow	$Y^{\text{Non-college}}_{\text{Diego}}$
$Y^{\text{College}}_{\text{Javier}}$	\leftrightarrow	$Y^{\text{Non-college}}_{\text{Javier}}$
$Y^{\text{College}}_{\text{Jesús}}$	\leftrightarrow	$Y^{\text{Non-college}}_{\text{Jesús}}$

Outcome
under
treatment

Outcome
under
control

Preview: Solving the problem by assumptions

The data

Each Row is a Person	Y^{College} Nick	?
	Y^{College} William	
	?	$Y^{\text{Non-college}}$ Rich
	Y^{College} Diego	?
	?	$Y^{\text{Non-college}}$ Javier
	?	$Y^{\text{Non-college}}$ Jesús
	Outcome under treatment	Outcome under control

The claim

Y^{College} Nick	\leftrightarrow	$Y^{\text{Non-college}}$ Nick
Y^{College} William	\leftrightarrow	$Y^{\text{Non-college}}$ William
Y^{College} Rich	\leftrightarrow	$Y^{\text{Non-college}}$ Rich
Y^{College} Diego	\leftrightarrow	$Y^{\text{Non-college}}$ Diego
Y^{College} Javier	\leftrightarrow	$Y^{\text{Non-college}}$ Javier
Y^{College} Jesús	\leftrightarrow	$Y^{\text{Non-college}}$ Jesús
Outcome under treatment		Outcome under control

Preview: Solving the problem by assumptions

The data

Each Row is a Person	Y^{College} Nick	?
	Y^{College} William	
	?	$Y^{\text{Non-college}}$ Rich
	Y^{College} Diego	?
	?	$Y^{\text{Non-college}}$ Javier
	?	$Y^{\text{Non-college}}$ Jesús

Outcome under treatment Outcome under control

The claim

Y^{College} Nick	\leftrightarrow	$Y^{\text{Non-college}}$ Nick
Y^{College} William	\leftrightarrow	$Y^{\text{Non-college}}$ William
Y^{College} Rich	\leftrightarrow	$Y^{\text{Non-college}}$ Rich
Y^{College} Diego	\leftrightarrow	$Y^{\text{Non-college}}$ Diego
Y^{College} Javier	\leftrightarrow	$Y^{\text{Non-college}}$ Javier
Y^{College} Jesús	\leftrightarrow	$Y^{\text{Non-college}}$ Jesús

Outcome under treatment Outcome under control

Preview: Solving the problem by assumptions

The data

Each Row is a Person	Y^{College} Nick	?
	Y^{College} William	
?	Y^{College} Rich	?
	Y^{College} Diego	
?	$Y^{\text{Non-college}}$ Javier	?
	$Y^{\text{Non-college}}$ Jesús	

Outcome under treatment Outcome under control

The claim

Y^{College} Nick	\leftrightarrow	$Y^{\text{Non-college}}$ Nick
Y^{College} William	\leftrightarrow	$Y^{\text{Non-college}}$ William
Y^{College} Rich	\leftrightarrow	$Y^{\text{Non-college}}$ Rich
Y^{College} Diego	\leftrightarrow	$Y^{\text{Non-college}}$ Diego
Y^{College} Javier	\leftrightarrow	$Y^{\text{Non-college}}$ Javier
Y^{College} Jesús	\leftrightarrow	$Y^{\text{Non-college}}$ Jesús

Outcome under treatment Outcome under control

Preview: Solving the problem by assumptions

The data

Each Row is a Person	Y^{College} Nick	$Y^{\text{Non-college}}$ Rich
	Y^{College} William	
Y^{College} Diego	?	$Y^{\text{Non-college}}$ Javier
	?	$Y^{\text{Non-college}}$ Jesús

Outcome under treatment Outcome under control

The claim

Y^{College} Nick	\leftrightarrow	$Y^{\text{Non-college}}$ Nick
Y^{College} William	\leftrightarrow	$Y^{\text{Non-college}}$ William
Y^{College} Rich	\leftrightarrow	$Y^{\text{Non-college}}$ Rich
Y^{College} Diego	\leftrightarrow	$Y^{\text{Non-college}}$ Diego
Y^{College} Javier	\leftrightarrow	$Y^{\text{Non-college}}$ Javier
Y^{College} Jesús	\leftrightarrow	$Y^{\text{Non-college}}$ Jesús

Outcome under treatment Outcome under control

Quick review

Quick review

1. causal effects involve missing data
 - ▶ Nick finished college college
 - ▶ outcome without college is unobserved

Quick review

1. causal effects involve missing data
 - ▶ Nick finished college college
 - ▶ outcome without college is unobserved
2. randomization solves the missing data problem by design
 - ▶ treated and control groups are exchangeable

Quick review

1. causal effects involve missing data
 - ▶ Nick finished college
 - ▶ outcome without college is unobserved
2. randomization solves the missing data problem by design
 - ▶ treated and control groups are exchangeable
3. observational studies solve the missing data problem by assumptions
 - ▶ find population subgroups who look similar before treatment
 - ▶ assume it is like an experiment within the subgroups

Learning goals for today

By the end of class, you will be able to

- ▶ explain the fundamental problem of causal inference and the need for causal arguments
- ▶ define potential outcomes
- ▶ recall mathematical concepts from probability
 - ▶ random variables
 - ▶ expectation
 - ▶ conditional expectation

You can now

- ▶ Read Chapter 1 of [Hernán and Robins 2020](#)