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Learning goals for today

By the end of class, you will be able to

» explain the fundamental problem of causal inference and the
need for causal arguments

» define potential outcomes

» recall mathematical concepts from probability
» random variables
P> expectation
» conditional expectation



Causal claims hinge on arguments, not on data
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Fundamental problem of causal inference
Holland 1986
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Causal inference is a missing data problem
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Mathematical notation: Potential outcomes

Y;  Outcome Whether person i survived

A;  Treatment Whether person i ate a Mediterranean diet

Y? Potential Outcome Outcome person i would realize if
assigned to treatment value a

Examples:
Yian = survived lan survived
Ajan = MediterraneanDiet lan ate a Mediterranean diet
Medit Diet . . . .
Yo crerraneantiet — survived lan would survive on a Mediterranean diet

yStandardDiet _ 4464 lan would die on a standard diet

Discuss.
Which potential outcome is observed?
Which is counterfactual?
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Mathematical notation: Potential outcomes are fixed

A person’s potential outcome is a fixed quantity

Yll;/rl1ed|terraneanD|et = survived

The outcome for a random person is a random variable
» Draw a random person from the population
» Assign them a Mediterranean diet
» The outcome YMediterraneanDiet g 5 random variable:
» takes the value survived if we randomly sample some people

» takes the value died if we randomly sample others

Check for understanding:
Does it make sense to write V(Y?)? How about V(Y?)
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Notation: Expectation operator

The expectation operator E() denotes the population mean

1 n
_ a
_n;Y"

The quantity Y? inside the expectation must be a random variable

A conditional expectation is denoted with a vertical bar

E(Y|A=a)= ZY

IAfa
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Practice: How would you write this in math?

1. On average, students who do the homework learn more than
those who don't

E(Learning | HW = TRUE) > E(Learning | HW = FALSE)

2. On average, doing the homework causes more learning

E(LearningHW:TRUE) > E(LearningHW:FALSE)



An example about inequality

OVERCOMING
THE ODDS

JENNIE E. BRAND




Americans’ education in 1900 (Brand 2023 p. 6)
» 6% graduated from high school
» 3% graduated from college



Figure 1.1 High School and Four-Year College Completion Rates,
1940-2020
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Why did education expand?

» Public investment in college

» Morrill Act (1862) sold land to establish colleges
> G.I. Bill (1944) funded veterans' college

» Rising labor market demand for skills



We would like to know whether college pays off:
does it have positive effects on desired outcomes?
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Quick review

1. causal effects involve missing data

» Nick finished college college
» outcome without college is unobserved

2. randomization solves the missing data problem by design
» treated and control groups are exchangeable

3. observational studies solve the missing data problem by
assumptions
» find population subgroups who look similar before treatment
P assume it is like an experiment within the subgroups



Learning goals for today

By the end of class, you will be able to

» explain the fundamental problem of causal inference and the
need for causal arguments

» define potential outcomes

» recall mathematical concepts from probability
» random variables
P> expectation
» conditional expectation



You can now

» Read Chapter 1 of Herndan and Robins 2020


https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/
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