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Learning goals for today

By the end of class, you will be able to

▶ explain the fundamental problem of causal inference and the
need for causal arguments

▶ define potential outcomes
▶ recall mathematical concepts from probability

▶ random variables
▶ expectation
▶ conditional expectation



Causal claims hinge on arguments, not on data
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Causal claims hinge on arguments, not on data

1. Statistical evidence
▶ Simone Biles swung on the uneven bars. She won a gold

medal.

▶ I did not swing on the uneven bars. I did not win a gold medal.

2. Possible causal claim
▶ Swinging on the uneven bars causes a person to win a gold

medal.

Do you win gold if you: Causal effect
Swing Do not swing of swinging

Simone Biles Yes (1) ? ?
Ian ? No (0) ?
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Fundamental problem of causal inference
Holland 1986
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Mathematical notation: Potential outcomes

Yi Outcome Whether person i survived
Ai Treatment Whether person i ate a Mediterranean diet
Y a
i Potential Outcome Outcome person i would realize if

assigned to treatment value a

Examples:

YIan = survived Ian survived

AIan = MediterraneanDiet Ian ate a Mediterranean diet

YMediterraneanDiet
Ian = survived Ian would survive on a Mediterranean diet

Y StandardDiet
Ian = died Ian would die on a standard diet

Discuss.
Which potential outcome is observed?
Which is counterfactual?
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Mathematical notation: Potential outcomes are fixed

A person’s potential outcome is a fixed quantity

YMediterraneanDiet
Ian = survived

The outcome for a random person is a random variable

▶ Draw a random person from the population

▶ Assign them a Mediterranean diet
▶ The outcome YMediterraneanDiet is a random variable:

▶ takes the value survived if we randomly sample some people
▶ takes the value died if we randomly sample others

Check for understanding:
Does it make sense to write V(Y a

i )? How about V(Y a)
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Notation: Expectation operator

The expectation operator E() denotes the population mean

E(Y a) =
1

n

n∑
i=1

Y a
i

The quantity Y a inside the expectation must be a random variable

A conditional expectation is denoted with a vertical bar

E(Y | A = a) =
1

na

∑
i :Ai=a

Yi
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Practice: How would you say this in English?

We might wonder how a person’s earnings relate to whether they
hold a college degree

1. E(Earnings | Degree = TRUE) > E(Earnings | Degree = FALSE)

▶ Average earnings are higher among those with college degrees

2. E(EarningsDegree=TRUE) > E(EarningsDegree=FALSE)

▶ On average, a degree causes higher earnings
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Practice: How would you write this in math?

1. On average, students who do the homework learn more than
those who don’t

E(Learning | HW = TRUE) > E(Learning | HW = FALSE)

2. On average, doing the homework causes more learning

E(LearningHW=TRUE) > E(LearningHW=FALSE)
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An example about inequality



Americans’ education in 1900 (Brand 2023 p. 6)

▶ 6% graduated from high school

▶ 3% graduated from college



(Brand 2023)



Why did education expand?

▶ Public investment in college
▶ Morrill Act (1862) sold land to establish colleges
▶ G.I. Bill (1944) funded veterans’ college

▶ Rising labor market demand for skills
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We would like to know whether college pays off:
does it have positive effects on desired outcomes?



Mathematical notation for two types of claims
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The fundamental problem of causal inference
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Quick review

1. causal effects involve missing data
▶ Nick finished college college
▶ outcome without college is unobserved

2. randomization solves the missing data problem by design
▶ treated and control groups are exchangeable

3. observational studies solve the missing data problem by
assumptions
▶ find population subgroups who look similar before treatment
▶ assume it is like an experiment within the subgroups
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Learning goals for today

By the end of class, you will be able to

▶ explain the fundamental problem of causal inference and the
need for causal arguments

▶ define potential outcomes
▶ recall mathematical concepts from probability

▶ random variables
▶ expectation
▶ conditional expectation



You can now

▶ Read Chapter 1 of Hernán and Robins 2020

https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/
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