### Randomized Experiments<sup>1</sup>

Sociol 114

30 Jan 2025

<sup>&</sup>lt;sup>1</sup>Some material in this lecture draws on past materials by Sam Wang at Cornell University. Thanks Sam!

At the end of class, you will be able to:

- 1. Explain exchangeability in randomized experiments
- 2. Make arguments about why exchangeability may not hold in particular cases when a treatment is not randomized

#### Population Outcomes



| Population<br>Outcomes |               |  |  |
|------------------------|---------------|--|--|
|                        | $Y_{Maria}$   |  |  |
|                        | $Y_{William}$ |  |  |
|                        | $Y_{Rich}$    |  |  |
|                        | $Y_{Sarah}$   |  |  |
|                        | $Y_{Alondra}$ |  |  |
|                        | $Y_{Jesús}$   |  |  |

| Randomized<br>Sampling   |  |  |
|--------------------------|--|--|
| $S_{Maria} = 1$          |  |  |
| $S_{\text{William}} = 0$ |  |  |
| $S_{Rich} = 0$           |  |  |
| $S_{Sarah} = 1$          |  |  |
| $S_{Alondra} = 0$        |  |  |
| $S_{\text{Jesús}} = 1$   |  |  |

| Population<br>Outcomes | Randomized<br>Sampling | Sampled<br>Outcomes |  |
|------------------------|------------------------|---------------------|--|
| Y <sub>Maria</sub>     | $S_{Maria} = 1$        | Y <sub>Maria</sub>  |  |
| Y <sub>William</sub>   | $S_{\sf William} = 0$  |                     |  |
| Y <sub>Rich</sub>      | $S_{Rich} = 0$         |                     |  |
| $Y_{Sarah}$            | $S_{Sarah} = 1$        | $Y_{Sarah}$         |  |
| $Y_{Alondra}$          | $S_{Alondra} = 0$      |                     |  |
| Y <sub>Jesús</sub>     | $S_{Jesús} = 1$        | $Y_{Jesús}$         |  |

| Population<br>Outcomes |                    | Randomized<br>Sampling   | Sampled<br>Outcomes | <b>Estin</b><br>Estim   |
|------------------------|--------------------|--------------------------|---------------------|-------------------------|
|                        | Y <sub>Maria</sub> | $S_{Maria} = 1$          | $Y_{Maria}$         | popu<br>by th           |
|                        | $Y_{William}$      | $S_{\text{William}} = 0$ |                     |                         |
|                        | Y <sub>Rich</sub>  | $S_{Rich} = 0$           |                     | Key                     |
|                        | $Y_{Sarah}$        | $S_{Sarah} = 1$          | $Y_{Sarah}$         | unsar                   |
|                        | $Y_{Alondra}$      | $S_{Alondra} = 0$        |                     | are <b>e</b> :<br>due t |
|                        | Y <sub>Jesús</sub> | $S_{Jesús} = 1$          | Y <sub>Jesús</sub>  | samp                    |

#### **Estimator:** Estimate the population mean by the sample mean

Key assumption: Sampled and unsampled units are exchangeable due to random sampling

 $Y \perp S$ 

Now suppose our population all participate in a randomized experiment with treatment (A = 1) and control (A = 0) conditions

#### Population Potential Outcomes



| Population<br>Potential<br>Outcomes |                 |   |
|-------------------------------------|-----------------|---|
|                                     | $Y^1_{Maria}$   |   |
|                                     | $Y^1_{William}$ | 4 |
|                                     | $Y^1_{Rich}$    |   |
|                                     | $Y^1_{Sarah}$   |   |
|                                     | $Y^1_{Alondra}$ | A |
|                                     | $Y^1_{Jesús}$   |   |

andomized Treatment  $A_{\text{Maria}} = 1$  $A_{William} = 0$  $A_{\rm Rich} = 0$  $A_{Sarah} = 1$  $A_{Alondra} = 0$  $A_{\text{lesús}} = 1$ 

| Population<br>Potential<br>Outcomes |                 | n<br>Randomized<br>5 Treatment | Observed<br>Outcomes |  |
|-------------------------------------|-----------------|--------------------------------|----------------------|--|
|                                     | $Y^1_{Maria}$   | $\mathcal{A}_{Maria} = 1$      | $Y_{Maria}^1$        |  |
|                                     | $Y^1_{William}$ | $A_{\text{William}} = 0$       |                      |  |
|                                     | $Y^1_{Rich}$    | $A_{Rich} = 0$                 |                      |  |
|                                     | $Y^1_{Sarah}$   | $A_{Sarah} = 1$                | $Y^1_{Sarah}$        |  |
|                                     | $Y^1_{Alondra}$ | $A_{Alondra} = 0$              |                      |  |
|                                     | $Y^1_{Jesús}$   | $A_{Jesús} = 1$                | $Y^1_{Jesús}$        |  |

| Population<br>Potential<br>Outcomes |                 | Randomized<br>Treatment  | Observed<br>Outcomes | <b>Estimator:</b><br>Estimate the |
|-------------------------------------|-----------------|--------------------------|----------------------|-----------------------------------|
|                                     | $Y^1_{Maria}$   | $A_{Maria} = 1$          | $Y^1_{Maria}$        | E( $Y^1$ ) by the                 |
|                                     | $Y^1_{William}$ | $A_{William} = 0$        |                      | untreated sample mean             |
|                                     | $Y^1_{Rich}$    | $\mathcal{A}_{Rich} = 0$ |                      | Key assumption:                   |
|                                     | $Y^1_{Sarah}$   | $A_{Sarah} = 1$          | $Y^1_{Sarah}$        | untreated units                   |
|                                     | $Y^1_{Alondra}$ | $A_{Alondra} = 0$        |                      | due to random                     |
|                                     | $Y^1_{Jesús}$   | $A_{Jesús} = 1$          | $Y^1_{Jesús}$        | treatment assignment              |
|                                     |                 |                          |                      | $Y^1 \perp A$                     |

| <b>Es</b><br>Est | Observed<br>Outcomes      | Randomized<br>Treatment  | Population<br>Potential<br>Outcomes |  |
|------------------|---------------------------|--------------------------|-------------------------------------|--|
| ро<br>E(         |                           | $A_{Maria} = 1$          | $Y^0_{Maria}$                       |  |
| un               | $Y^0_{\text{William}}$    | $A_{\text{William}} = 0$ | $Y^0_{\text{William}}$              |  |
| Ke<br>Tre        | $Y^0_{\text{Rich}}$       | $A_{Rich} = 0$           | $Y^0_{Rich}$                        |  |
| un               |                           | $A_{Sarah} = 1$          | $Y^0_{Sarah}$                       |  |
| are<br>du        | Y <sup>0</sup><br>Alondra | $A_{Alondra} = 0$        | $Y^0_{Alondra}$                     |  |
| tre              |                           | $A_{\text{Jesús}} = 1$   | $Y^0_{\text{Jesús}}$                |  |

#### **Estimator:** Estimate the

Estimate the population mean  $E(Y^0)$  by the untreated sample mean

**Key assumption**: Treated and untreated units are **exchangeable** due to random treatment assignment

 $Y^0 \perp \!\!\!\perp A$ 

| Population<br>Potential<br>Outcomes |                      | Randomized<br>Treatment    | andomized Observed<br>Treatment Outcomes |                        |
|-------------------------------------|----------------------|----------------------------|------------------------------------------|------------------------|
| $Y^1_{Maria}$                       | $Y^0_{Maria}$        | $A_{Maria} = 1$            | $Y^1_{Maria}$                            |                        |
| $Y^1_{William}$                     | $Y^0_{William}$      | $A_{William} = 0$          |                                          | $Y_{\text{William}}^0$ |
| $Y^1_{Rich}$                        | $Y^0_{Rich}$         | $A_{Rich} = 0$             |                                          | $Y^0_{Rich}$           |
| $Y^1_{Sarah}$                       | $Y^0_{Sarah}$        | $A_{Sarah} = 1$            | $Y^1_{Sarah}$                            |                        |
| $Y^1_{Alondra}$                     | $Y^0_{Alondra}$      | $A_{\mathbf{Alondra}} = 0$ |                                          | $Y^0_{Alondra}$        |
| $Y^1_{Jesús}$                       | $Y^0_{\text{Jesús}}$ | $A_{ m Jesús}=1$           | $Y^1_{Jesús}$                            |                        |

#### **Causal Estimand:**

(expected outcome if assigned to treatment)

- (expected outcome if assigned to control)

 $E(Y^1) - E(Y^0)$ 

#### Exchangeability Assumption:

Potential outcomes are independent of treatment assignment

 $\{Y^0,Y^1\} \perp A$ 

#### **Empirical Estimand:**

(expected outcome among the treated)

- (expected outcome among the untreated)

$$\mathsf{E}(Y \mid A = 1) - \mathsf{E}(Y \mid A = 0)$$

$$E(Y^{1}) - E(Y^{0})$$
  
=  $E(Y^{1} | A = 1) - E(Y^{0} | A = 0)$   
=  $E(Y | A = 1) - E(Y | A = 0)$ 

$$\begin{split} \mathsf{E}\left(Y^{1}\right) &- \mathsf{E}\left(Y^{0}\right) \\ &= \mathsf{E}\left(Y^{1} \mid A = 1\right) - \mathsf{E}\left(Y^{0} \mid A = 0\right) \\ &= \mathsf{E}\left(Y \mid A = 1\right) - \mathsf{E}\left(Y \mid A = 0\right) \qquad \qquad \text{by consistency} \end{split}$$

$$\begin{split} \mathsf{E}\left(Y^{1}\right) &- \mathsf{E}\left(Y^{0}\right) \\ &= \mathsf{E}\left(Y^{1} \mid A = 1\right) - \mathsf{E}\left(Y^{0} \mid A = 0\right) \quad \text{by exchangeability} \\ &= \mathsf{E}\left(Y \mid A = 1\right) - \mathsf{E}\left(Y \mid A = 0\right) \qquad \text{by consistency} \end{split}$$

$$\begin{split} &\mathsf{E}\left(Y^{1}\right) - \mathsf{E}\left(Y^{0}\right) \\ &= \mathsf{E}\left(Y^{1} \mid A = 1\right) - \mathsf{E}\left(Y^{0} \mid A = 0\right) \quad \text{by exchangeability} \\ &= \mathsf{E}\left(Y \mid A = 1\right) - \mathsf{E}\left(Y \mid A = 0\right) \qquad \text{by consistency} \end{split}$$

This is an example of **causal identification**: using assumptions to arrive at an empirical quantity (involving only factual random variables, no potential outcomes) that equals our causal estimand if the assumptions hold

The causal estimand  $E(Y^1) - E(Y^0)$  is **identified** by the empirical estimand E(Y | A = 1) - E(Y | A = 0)

#### Potential outcome exercise: Covid vaccines

#### Potential outcome exercise: Covid vaccines

Suppose we know the following pieces of information:

- Martha was vaccinated against Covid. Martha tested negative 6 months later.
- Ezra was not vaccinated against Covid.
   Ezra tested positive 6 months later.

#### Potential outcome exercise: Covid vaccines

Suppose we know the following pieces of information:

- Martha was vaccinated against Covid. Martha tested negative 6 months later.
- Ezra was not vaccinated against Covid.
   Ezra tested positive 6 months later.

Which cells have known values? What are the values?

|        | Ai | Yi | $Y_i^{Vaccinated}$ | $Y_i^{Unvaccinated}$ |
|--------|----|----|--------------------|----------------------|
| Martha |    |    |                    |                      |
| Ezra   |    |    |                    |                      |

Suppose we gathered data by surveying individuals in Fall of 2021

- Vaccinated for covid  $(A_i = 1)$  or not  $(A_i = 0)$
- Tested positive for Covid in 2021: yes  $(Y_i = 1)$  or no  $(Y_i = 0)$

We observe evidence

- Of the individuals who are vaccinated (A<sub>i</sub> = 1), 50% had a positive Covid test (Y<sub>i</sub> = 1)
- ▶ Of the individuals who are **not vaccinated** (A<sub>i</sub> = 0), 70% had a positive Covid test (Y<sub>i</sub> = 1)

We observe evidence

- Of the individuals who are vaccinated (A<sub>i</sub> = 1), 50% had a positive Covid test (Y<sub>i</sub> = 1)
- ▶ Of the individuals who are **not vaccinated** (A<sub>i</sub> = 0), 70% had a positive Covid test (Y<sub>i</sub> = 1)

How might a vaccine skeptic explain the data?

Experiment designed by Pfizer **randomly assign** each individual (43,000 total) into two groups<sup>2</sup>:

- ► Two doses of BNT162b2 vaccine 21 days apart
- ► Two doses of placebo 21 days apart
- Whether a positive Covid test was recorded between 7 days and 14 weeks after the injection

<sup>&</sup>lt;sup>2</sup>Polack et. al. NEJM 2020

Experiment designed by Pfizer **randomly assign** each individual (43,000 total) into two groups<sup>2</sup>:

- ► Two doses of BNT162b2 vaccine 21 days apart
- Two doses of placebo 21 days apart
- Whether a positive Covid test was recorded between 7 days and 14 weeks after the injection
- ▶ Of the individuals who were given the vaccine (A<sub>i</sub> = 1), 0.04% had a positive Covid test (Y<sub>i</sub> = 1)
- ▶ Of the individuals who were given the placebo (A<sub>i</sub> = 0), 0.9% had a positive Covid test (Y<sub>i</sub> = 1)
- ► Individuals who received the placebo were ≈ 20 times more likely to get Covid

<sup>&</sup>lt;sup>2</sup>Polack et. al. NEJM 2020

Experiment designed by Pfizer **randomly assign** each individual (43,000 total) into two groups<sup>2</sup>:

- ► Two doses of BNT162b2 vaccine 21 days apart
- Two doses of placebo 21 days apart
- Whether a positive Covid test was recorded between 7 days and 14 weeks after the injection
- ▶ Of the individuals who were given the vaccine (A<sub>i</sub> = 1), 0.04% had a positive Covid test (Y<sub>i</sub> = 1)
- ▶ Of the individuals who were given the placebo (A<sub>i</sub> = 0), 0.9% had a positive Covid test (Y<sub>i</sub> = 1)
- ► Individuals who received the placebo were ≈ 20 times more likely to get Covid

#### Do the skeptic's objections still hold?

<sup>2</sup>Polack et. al. NEJM 2020

| Table 1. Demographic Characteristics of the Participants in the Main Safety Population.* |                        |                       |                     |  |  |  |
|------------------------------------------------------------------------------------------|------------------------|-----------------------|---------------------|--|--|--|
| Characteristic                                                                           | BNT162b2<br>(N=18,860) | Placebo<br>(N=18,846) | Total<br>(N=37,706) |  |  |  |
| Sex — no. (%)                                                                            |                        |                       |                     |  |  |  |
| Male                                                                                     | 9,639 (51.1)           | 9,436 (50.1)          | 19,075 (50.6)       |  |  |  |
| Female                                                                                   | 9,221 (48.9)           | 9,410 (49.9)          | 18,631 (49.4)       |  |  |  |
| Race or ethnic group — no. (%)†                                                          |                        |                       |                     |  |  |  |
| White                                                                                    | 15,636 (82.9)          | 15,630 (82.9)         | 31,266 (82.9)       |  |  |  |
| Black or African American                                                                | 1,729 (9.2)            | 1,763 (9.4)           | 3,492 (9.3)         |  |  |  |
| Asian                                                                                    | 801 (4.2)              | 807 (4.3)             | 1,608 (4.3)         |  |  |  |
| Native American or Alaska Native                                                         | 102 (0.5)              | 99 (0.5)              | 201 (0.5)           |  |  |  |
| Native Hawaiian or other Pacific Islander                                                | 50 (0.3)               | 26 (0.1)              | 76 (0.2)            |  |  |  |
| Multiracial                                                                              | 449 (2.4)              | 406 (2.2)             | 855 (2.3)           |  |  |  |
| Not reported                                                                             | 93 (0.5)               | 115 (0.6)             | 208 (0.6)           |  |  |  |
| Hispanic or Latinx                                                                       | 5,266 (27.9)           | 5,277 (28.0)          | 10,543 (28.0)       |  |  |  |
| Country — no. (%)                                                                        |                        |                       |                     |  |  |  |
| Argentina                                                                                | 2,883 (15.3)           | 2,881 (15.3)          | 5,764 (15.3)        |  |  |  |
| Brazil                                                                                   | 1,145 (6.1)            | 1,139 (6.0)           | 2,284 (6.1)         |  |  |  |
| South Africa                                                                             | 372 (2.0)              | 372 (2.0)             | 744 (2.0)           |  |  |  |
| United States                                                                            | 14,460 (76.7)          | 14,454 (76.7)         | 28,914 (76.7)       |  |  |  |
| Age group — no. (%)                                                                      |                        |                       |                     |  |  |  |
| 16-55 yr                                                                                 | 10,889 (57.7)          | 10,896 (57.8)         | 21,785 (57.8)       |  |  |  |
| >55 yr                                                                                   | 7,971 (42.3)           | 7,950 (42.2)          | 15,921 (42.2)       |  |  |  |
| Age at vaccination — yr                                                                  |                        |                       |                     |  |  |  |
| Median                                                                                   | 52.0                   | 52.0                  | 52.0                |  |  |  |
| Range                                                                                    | 16-89                  | 16-91                 | 16-91               |  |  |  |
| Body-mass index‡                                                                         |                        |                       |                     |  |  |  |
| ≥30.0: obese                                                                             | 6,556 (34.8)           | 6,662 (35.3)          | 13,218 (35.1)       |  |  |  |

\* Percentages may not total 100 because of rounding.

† Race or ethnic group was reported by the participants.

The body-mass index is the weight in kilograms divided by the square of the height in meters.

In random experiments, the distribution of **potential outcomes** for those who are treated and those who are not treated (control group) are identically distributed!

 $\{Y^1, Y^0\} \perp A$ 

#### This is exchangeability

**Question.** Does exchangeability imply  $Y \perp A$ ?

Exchangeability is about **potential** rather than **observed** outcomes

 $\{Y^0, Y^1\} \perp A$  rather than  $Y \not\perp A$ 

Exchangeability is about **potential** rather than **observed** outcomes

 $\{Y^0, Y^1\} \perp A$  rather than  $Y \not\perp A$ 

- Potential outcomes are independent of treatment {Y<sup>0</sup>, Y<sup>1</sup>} \mm A
  - Example: Risk of covid under no vaccine (Y<sup>0</sup>) is the same for those with and without a vaccine

Exchangeability is about **potential** rather than **observed** outcomes

 $\{Y^0, Y^1\} \perp A$  rather than  $Y \not\perp A$ 

- Potential outcomes are independent of treatment {Y<sup>0</sup>, Y<sup>1</sup>} \model A
  - Example: Risk of covid under no vaccine (Y<sup>0</sup>) is the same for those with and without a vaccine

▶ Observed outcomes are not independent of treatment  $Y \not\!\!\perp A$ 

- ► Example: Risk of covid is lower for those with the vaccine
- Why? Because for them  $Y = Y^1$ . For others,  $Y = Y^0$ .
- ► If A affects Y, then  $Y \not\perp A$

Exchangeability is about **potential** rather than **observed** outcomes

 $\{Y^0, Y^1\} \perp A$  rather than  $Y \not\perp A$ 

- Potential outcomes are independent of treatment {Y<sup>0</sup>, Y<sup>1</sup>} \L A
  - Example: Risk of covid under no vaccine (Y<sup>0</sup>) is the same for those with and without a vaccine

▶ Observed outcomes are not independent of treatment  $Y \not\!\!\perp A$ 

- ► Example: Risk of covid is lower for those with the vaccine
- Why? Because for them  $Y = Y^1$ . For others,  $Y = Y^0$ .
- ► If A affects Y, then  $Y \not\perp A$

Under exchangeability, the only reason  $Y \not\perp A$  is if A causes Y.

## Design a hypothetical experiment

- Define a treatment and an outcome
- Design a randomized experiment
  - ► Who would you enroll?
  - How would you randomize the treatment?
  - When and how would you measure the outcome?
- Think of a criticism that could be levied against you if you had not randomized the treatment, which is overcome by randomization

At the end of class, you will be able to:

- 1. Explain exchangeability in randomized experiments
- 2. Make arguments about why exchangeability may not hold in particular cases when a treatment is not randomized