Social Data Science SOCIOL 114 Winter 2025

Causal inference:

Connections to statistical modeling

Learning goals for today

By the end of class, you will be able to

► connect causal inference

to statistical modeling

(a missing data problem)

(predicting missing data)

A running example

I feel confident that I can answer quantitative questions with tools from data science.

- ► 1 = Agree
- ► 0 = Disagree

A running example

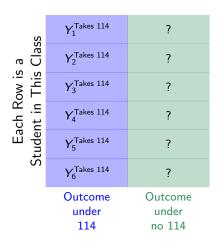
I feel confident that I can answer quantitative questions with tools from data science.

- ▶ 1 = Agree
- ► 0 = Disagree

What is the average causal effect of taking this class on confidence in data science skills?

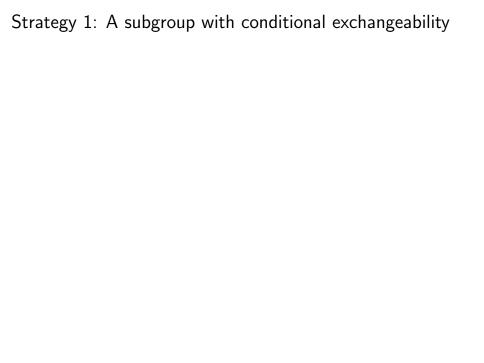
Using potential outcomes

Y₁Takes 114 Y1 No 114 Each Row is a Student in This Class Y2 Takes 114 Y2No 114 Y2 Takes 114 Y₃No 114 Yakes 114 YNo 114 Y Takes 114 Y No 114 Y₆Takes 114 Y6 No 114 Outcome Outcome under under 114 no 114


Y = I feel confident that I can answer quantitative questions with tools from data science

Using potential outcomes

Y₁Takes 114 Each Row is a Student in This Class Y2 Takes 114 ? Y3 Takes 114 ? YATakes 114 Y Takes 114 ? Y6 Takes 114 Outcome Outcome under under 114 no 114


Y = I feel confident that I can answer quantitative questions with tools from data science

Using potential outcomes

Y = I feel confident that I can answer quantitative questions with tools from data science

How could we learn about the (?)

- ► Some of the class was on the waitlist
 - ► some got in
 - ▶ others didn't

Each Row is a Student in This Class

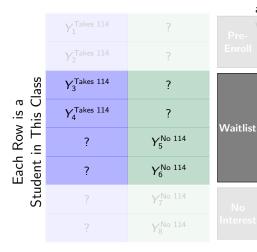
Studellt III Tills Class	$Y_1^{\sf Takes\ 114}$?
	Y ₂ Takes 114	?
	Y ₃ Takes 114	?
	Y ₄ ^{Takes 114}	?
	?	Y ₅ ^{No 114}
	?	Y ₆ ^{No 114}
	?	Y ₇ ^{No 114}
	?	Y ₈ ^{No 114}

Y = I feel confident that I can answer quantitative questions with tools from data science

Y₁Takes 114 Y2 Takes 114 Yakes 114 Each Row is a Student in This Class ? YATakes 114 Y₅No 114 Y6 No 114 Y7 No 114 Y₈No 114 Y = I feel confident that I can answer quantitative questions with tools from data science

Waitlist

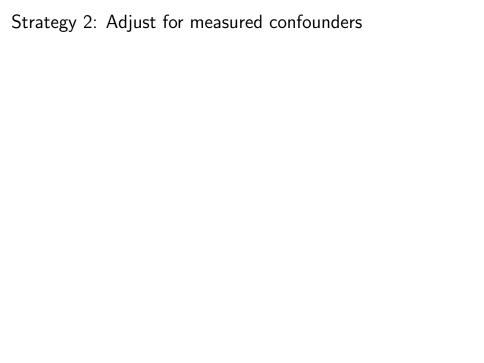
No Interest


Pre-Enroll

Yakes 114 Each Row is a Student in This Class YATakes 114 Y₅No 114 Y6 No 114

Y = I feel confident that I can answer quantitative questions with tools from data science

Waitlist


Y = I feel confident that I can answer quantitative questions with tools from data science

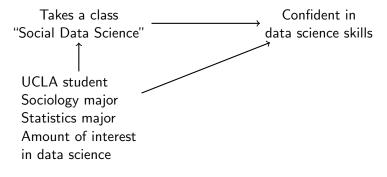
Benefits of strategy

Credible

Drawbacks

Limited target population

For each of you, we could compare


- 1. your opinion after 114
- 2. the average opinion of non-114 students who look like you

For each of you, we could compare

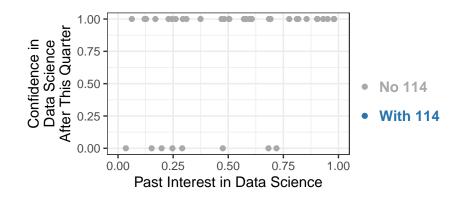
- 1. your opinion after 114
- 2. the average opinion of non-114 students who look like you

Looks like you in what ways? What else belongs in this DAG?

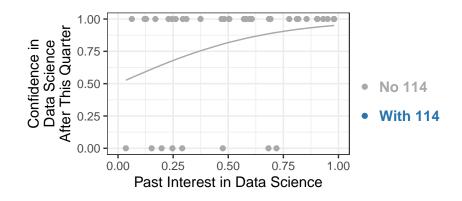
Takes a class Confident in "Social Data Science" data science skills

Suppose these are a sufficient adjustment set.

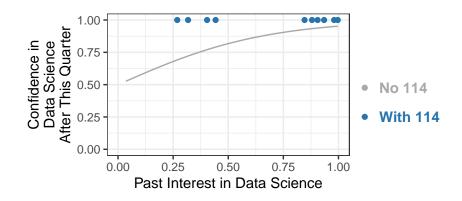
Nonparametric estimation:

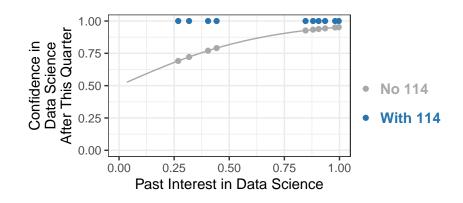

For each student in the class, find someone else who

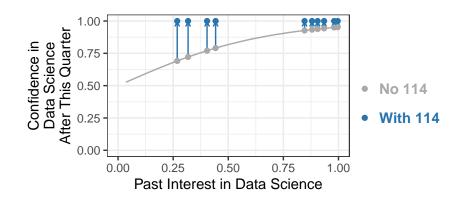
- ▶ is a student at UCLA
- shares your major
- is exactly as interested in data science as you are
- but did not take this class


Use your **match** to infer your $Y_i^{\text{No }114}$ for people like you:

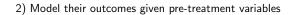
$$\mathsf{E}(Y^0 \mid \vec{X} = \vec{x_i}) = \underbrace{\mathsf{E}(Y \mid A = 0, \vec{X} = \vec{x_i})}_{\text{estimated from your match}}$$


since we have assumed conditional exchangeability given \vec{X} .


1) Find control units who didn't take this class

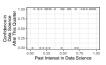

2) Model their outcomes given pre-treatment variables

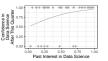
3) Find the treated units of interest

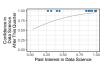

4) Predict their counterfactual outcomes

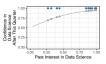
5) Infer causal effect for each person. Average over people

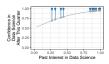
Strategy 2: Generalizing to a model

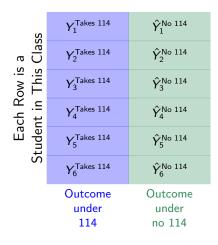


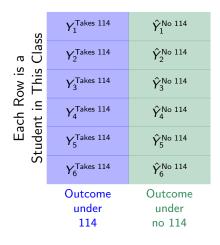




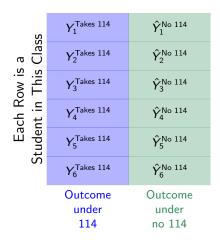

4) Predict their counterfactual outcomes

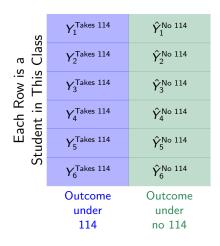

5) Infer causal effect for each person. Average over people



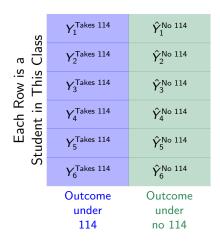


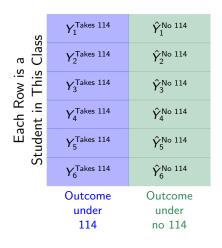
S	$Y_1^{\sf Takes\ 114}$?
s a Class	Y ₂ Takes 114	?
Each Row is Student in This	Y ₃ ^{Takes 114}	?
ch R nt in	Y ₄ ^{Takes 114}	?
Ea tudei	Y ₅ ^{Takes 114}	?
Š	Y ₆ ^{Takes 114}	?
	Outcome under 114	Outcome under no 114

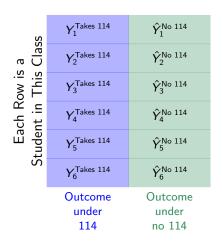

SS	Y ₁ ^{Takes 114}	$\hat{Y}_1^{No\ 114}$
s a Class	Y ₂ Takes 114	Ŷ ₂ ^{No 114}
ow is This	Y ₃ ^{Takes 114}	Ŷ ₃ ^{No 114}
ch R nt in	Y ₄ Takes 114	Ŷ ₄ ^{No 114}
Each Row is Student in This	Y ₅ ^{Takes} 114	Ŷ ₅ ^{No 114}
Ś	Y ₆ ^{Takes} 114	Ŷ ₆ ^{No 114}
	Outcome under 114	Outcome under no 114



General approach


1) Define potential outcomes


- 1) Define potential outcomes
- 2) Define target population


- 1) Define potential outcomes
- 2) Define target population
- 3) Make causal assumptions

- 1) Define potential outcomes
- 2) Define target population
- 3) Make causal assumptions
- 4) Model unobserved outcomes

- 1) Define potential outcomes
- 2) Define target population
- 3) Make causal assumptions
- 4) Model unobserved outcomes
- 5) Predict them

- 1) Define potential outcomes
- 2) Define target population
- 3) Make causal assumptions
- 4) Model unobserved outcomes
- 5) Predict them
- 6) Report an average

Learning goals for today

By the end of class, you will be able to

► connect causal inference

to statistical modeling

(a missing data problem)

(predicting missing data)