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Learning goals for today

At the end of class, you will be able to:

1. Use matching methods for causal effects
▶ Select a matching algorithm
▶ Define a distance metric for multivariate matching
▶ Evaluate matched sets

2. Reason about choosing regression vs matching



Matching: The big idea

Goal: Sample Average Treatment Effect on the Treated
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Matching: Estimate E(Y | A = 0, L⃗ = ℓ⃗i ) from one or more

untreated units with L⃗ “near” ℓ⃗i

Debates: What does it mean to be “near”?
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A concrete example

▶ In the 1970s, a research group selected disadvantaged workers

▶ Randomized to two treatment conditions
▶ job training
▶ no job training

▶ Lalonde (1986) subsequently did a methodological exercise:
try to recover the truth by comparing to non-randomized units
with no job training

▶ Dehejia & Wahba (1999) used this setting to illustrate
matching

To get the data:

install.packages(“MatchIt”)
data(“lalonde”, package = “MatchIt”)

https://www.jstor.org/stable/1806062
https://www.tandfonline.com/doi/abs/10.1080/01621459.1999.10473858
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Why matching is great

1. Completely transparent that Y 1
i is observed

2. Completely transparent how we estimate Ŷ 0
i

(from the matched unit)

3. Easy to explain

▶ We had some treated units
▶ We found comparable control units
▶ We took a mean difference

4. Can assess quality of matches before we look at the outcome

5. Model-free∗

▶ ∗ but you have to define what makes a match “good”
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Matching in univariate settings: Algorithms

▶ Caliper or no caliper

▶ 1:1 vs k :1

▶ With replacement vs without replacement

▶ Greedy vs optimal



Caliper or no caliper matching
Why might I be hesitant to find a match for Treated Unit 1?
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Confounder L⃗

▶ Caliper: A radius around a treated unit such that we would
rather drop the unit than make a match beyond that radius

▶ Feasible Sample Average Treatment Effect on the Treated
(FSATT): Average among treated units for whom an
acceptable match exists
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1:1 vs k :1 matching
Can we make use of Untreated Units 1 and 2?
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Unit 1
Untreated

Unit 2
Untreated

Unit 3

Treated

Unit 1

$1,100

$1,200

$1,300

$1,400

$1,500

$1,600

16.950 16.975 17.000 17.025 17.050
Age

E
ar

ni
ng

s 
in

 1
97

5 Treatment

Untreated:
No job training

Treated:
Job training



1:1 vs k :1 matching
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▶ Benefit of 2:1 matching

▶ Lower variance. Averaging over more cases.

▶ Benefit of 1:1 matching

▶ Lower bias. Only the best matches.

▶ Greater k → lower variance, higher bias
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With replacement vs without replacement matching
We match Treated 2 to Untreated 2. Who should be the match for Treated 1?
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▶ Lower variance. Averaging over more cases.

▶ Benefit of matching with replacement
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Greedy vs optimal matching

North side: Start with Treated 1. Find the best match.
South side: Start with Treated 2. Find the best match.
Both sides: Who is left as the match for the other treated unit?
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Greedy vs optimal matching1
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▶ Optimal is better. Just computationally harder.

1Gu, X. S., & Rosenbaum, P. R. (1993). Comparison of multivariate
matching methods: Structures, distances, and algorithms. Journal of
Computational and Graphical Statistics, 2(4), 405-420.

https://www.tandfonline.com/doi/abs/10.1080/10618600.1993.10474623
https://www.tandfonline.com/doi/abs/10.1080/10618600.1993.10474623
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Matching in univariate settings: Algorithms (recap)

▶ Caliper or no caliper

▶ 1:1 vs k :1

▶ With replacement vs without replacement

▶ Greedy vs optimal
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What if L⃗ is multivariate?
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Key concept: Distance defines who is closer

To find the closest match, we need to define what it means for
unit i and j to be close to each other.

d(x⃗i , x⃗j) = a number

will be the distance between confounder vectors x⃗i and x⃗j .



Who is closer? Euclidean and Manhattan distance
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Which untreated unit should be the match?
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▶ Manhattan distance:

d(i , j) =
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▶ Euclidean distance:
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√∑

p (Lpi − Lpj)
2

▶ d(Treated, Untreated 1) =
√
32 + 42 = 5 ✓

▶ d(Treated, Untreated 2) =
√
62 + 02 = 6

▶ It depends on the distance metric!



Who is closer? Euclidean and Manhattan distance

L1

L2 Length = 4

Length = 3

Length = 5

Length = 6
•

•

•
Treated

Untreated 1

Untreated 2

▶ Manhattan distance:

d(i , j) =
∑

p|Lpi − Lpj |
▶ d(Treated, Untreated 1) = 3 + 4 = 7
▶ d(Treated, Untreated 2) = 6 + 0 = 6 ✓

▶ Euclidean distance:

d(i , j) =
√∑

p (Lpi − Lpj)
2

▶ d(Treated, Untreated 1) =
√
32 + 42 = 5 ✓

▶ d(Treated, Untreated 2) =
√
62 + 02 = 6

▶ It depends on the distance metric!



Who is closer? Euclidean and Manhattan distance

L1

L2 Length = 4

Length = 3

Length = 5

Length = 6
•

•

•
Treated

Untreated 1

Untreated 2

▶ Manhattan distance: d(i , j) =
∑

p|Lpi − Lpj |

▶ d(Treated, Untreated 1) = 3 + 4 = 7
▶ d(Treated, Untreated 2) = 6 + 0 = 6 ✓

▶ Euclidean distance:

d(i , j) =
√∑

p (Lpi − Lpj)
2

▶ d(Treated, Untreated 1) =
√
32 + 42 = 5 ✓

▶ d(Treated, Untreated 2) =
√
62 + 02 = 6

▶ It depends on the distance metric!



Who is closer? Euclidean and Manhattan distance

L1

L2 Length = 4

Length = 3

Length = 5

Length = 6
•

•

•
Treated

Untreated 1

Untreated 2

▶ Manhattan distance: d(i , j) =
∑

p|Lpi − Lpj |
▶ d(Treated, Untreated 1) = 3 + 4 = 7
▶ d(Treated, Untreated 2) = 6 + 0 = 6 ✓

▶ Euclidean distance:

d(i , j) =
√∑

p (Lpi − Lpj)
2

▶ d(Treated, Untreated 1) =
√
32 + 42 = 5 ✓

▶ d(Treated, Untreated 2) =
√
62 + 02 = 6

▶ It depends on the distance metric!



Who is closer? Euclidean and Manhattan distance

L1

L2 Length = 4

Length = 3

Length = 5

Length = 6
•

•

•
Treated

Untreated 1

Untreated 2

▶ Manhattan distance: d(i , j) =
∑

p|Lpi − Lpj |
▶ d(Treated, Untreated 1) = 3 + 4 = 7
▶ d(Treated, Untreated 2) = 6 + 0 = 6 ✓

▶ Euclidean distance: d(i , j) =
√∑

p (Lpi − Lpj)
2

▶ d(Treated, Untreated 1) =
√
32 + 42 = 5 ✓

▶ d(Treated, Untreated 2) =
√
62 + 02 = 6

▶ It depends on the distance metric!



Who is closer? Euclidean and Manhattan distance

L1

L2 Length = 4

Length = 3

Length = 5

Length = 6
•

•

•
Treated

Untreated 1

Untreated 2

▶ Manhattan distance: d(i , j) =
∑

p|Lpi − Lpj |
▶ d(Treated, Untreated 1) = 3 + 4 = 7
▶ d(Treated, Untreated 2) = 6 + 0 = 6 ✓

▶ Euclidean distance: d(i , j) =
√∑

p (Lpi − Lpj)
2

▶ d(Treated, Untreated 1) =
√
32 + 42 = 5 ✓

▶ d(Treated, Untreated 2) =
√
62 + 02 = 6

▶ It depends on the distance metric!



Who is closer? Euclidean and Manhattan distance

L1

L2 Length = 4

Length = 3

Length = 5

Length = 6
•

•

•
Treated

Untreated 1

Untreated 2

▶ Manhattan distance: d(i , j) =
∑

p|Lpi − Lpj |
▶ d(Treated, Untreated 1) = 3 + 4 = 7
▶ d(Treated, Untreated 2) = 6 + 0 = 6 ✓

▶ Euclidean distance: d(i , j) =
√∑

p (Lpi − Lpj)
2

▶ d(Treated, Untreated 1) =
√
32 + 42 = 5 ✓

▶ d(Treated, Untreated 2) =
√
62 + 02 = 6

▶ It depends on the distance metric!
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Now suppose only L2 is related to treatment.
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A common distance metric: Propensity scores

Propensity score: πi = P(A = 1 | L⃗ = ℓ⃗i )

▶ Univariate summary of all confounders

▶ In expectation, a sample balanced on π is balanced on L⃗
▶ Rosenbaum & Rubin theorem2

2Rosenbaum, P. R., & Rubin, D. B. (1983). The central role of the
propensity score in observational studies for causal effects. Biometrika, 70(1),
41-55.

https://doi.org/10.1093/biomet/70.1.41
https://doi.org/10.1093/biomet/70.1.41
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A common distance metric: Propensity scores

Propensity scores can be nonparametric or parametric.

▶ Nonparametric: π̂i is the proportion treated in the sample
stratum L⃗ = ℓ⃗i .

▶ Parametric: Often estimated as
▶ Fit logistic regression

logit
(
P(A = 1 | L⃗)

)
= α+ L⃗β⃗

▶ Predict the probability of treatment

π̂i = logit−1
(
α̂+ ℓ⃗i

ˆ⃗
β
)

Propensity score distance for matching:

d(i , j) = |π̂i − π̂j |
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Workflow for matching

▶ Draw a DAG

▶ Select a sufficient adjustment set X⃗

▶ Define a distance: how far apart x⃗i and x⃗j are
▶ Choose a matching algorithm

▶ 1:1 without replacement, greedy

▶ Conduct matching

▶ Estimate ATE by outcome modeling on the matched set

The MatchIt package makes it easy

Discuss: Why regression? Why matching?

https://kosukeimai.github.io/MatchIt/articles/MatchIt.html


Learning goals for today

At the end of class, you will be able to:

1. Use matching methods for causal effects
▶ Select a matching algorithm
▶ Define a distance metric for multivariate matching
▶ Evaluate matched sets

2. Reason about choosing regression vs matching
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