Social Data Science

Soc 114 Winter 2025

Supervised Machine Learning Illustration with Trees

Learning goals for today

By the end of class, you will be able to

understand the notion of supervised machine learning

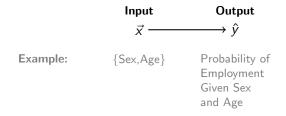
- ► an input-output machine
- learned on some learning cases
- used to predict for new cases

▶ apply that notion to the specific case of regression trees

Prediction function and supervised learning

A prediction function is an input-output function:

- input a vector of predictors \vec{x}
- output a predicted outcome $\hat{y} = \hat{f}(\vec{x})$



Supervised learning includes any approach that uses observed $\{\vec{x}, y\}$ data to learn a prediction function \hat{f}

cases for learning

26	F
40	М
61	М
32	F

Employed

case to predict 63 F ?

OLS is a prediction function

Input $\vec{x} \rightarrow \text{Output } \hat{y}$

$$\hat{y} = \hat{f}(\vec{x}) = \hat{eta}_0 + \hat{eta}_1(\mathsf{Sex} = \mathsf{Male}) + \hat{eta}_2(\mathsf{Age})$$

- Learn \hat{f} in a learning sample with $\{\vec{x}_i, y_i\}_{i=1}^n$
 - Computer finds $\hat{\beta}_0$, $\hat{\beta}_1$, $\hat{\beta}_2$ that predict well in the learning sample
- At a new \vec{x} value, predict $\hat{f}(\vec{x})$

Logistic regression is a prediction function Input $\vec{x} \rightarrow \text{Output } \hat{y}$

$$\hat{y} = \hat{f}(\vec{x}) = \mathsf{logit}^{-1} \left(\hat{eta}_0 + \hat{eta}_1(\mathsf{Sex} = \mathsf{Male}) + \hat{eta}_2(\mathsf{Age})
ight)$$

- Learn \hat{f} in a **learning sample** with $\{\vec{x}_i, y_i\}_{i=1}^n$
 - Computer finds $\hat{\beta}_0$, $\hat{\beta}_1$, $\hat{\beta}_2$ that predict well in the learning sample
- At a new \vec{x} value, predict $\hat{f}(\vec{x})$

Matching is a prediction function Input $\vec{x} \rightarrow \text{Output } \hat{y}$

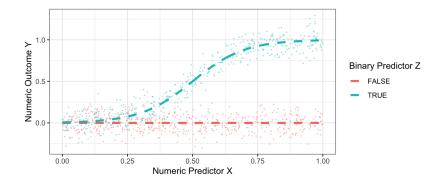
$$\hat{y} = \hat{f}(\vec{x}) = y_j$$

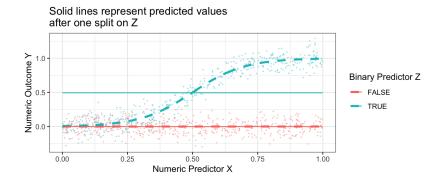
where unit j is the best match among the learning sample, which minimizes a distance from the case to predict: $d(\vec{x}, \vec{x_j})$ is small

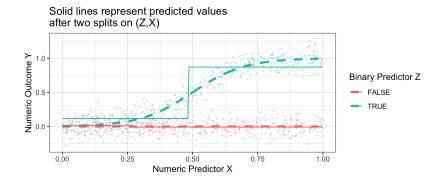
- Learn \hat{f} in a learning sample with $\{\vec{x}_i, y_i\}_{i=1}^n$
 - Computer finds j with \vec{x}_j most similar to \vec{x}
- At a new \vec{x} value, predict $\hat{f}(\vec{x})$

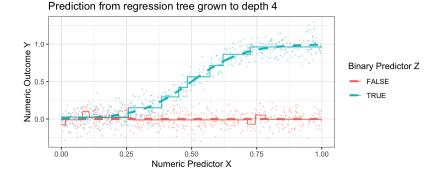
There are many prediction functions

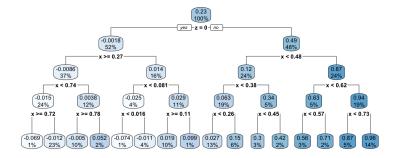
- input a vector of predictors \vec{x}
- output a predicted outcome $\hat{y} = \hat{f}(\vec{x})$

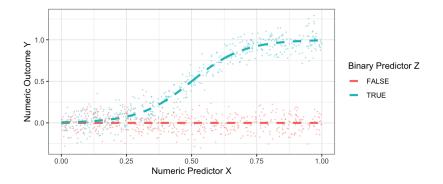


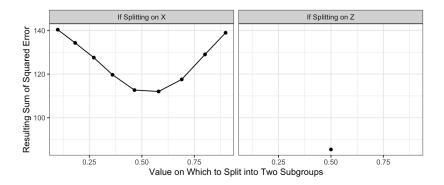


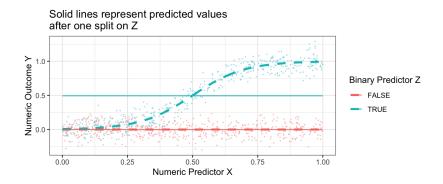


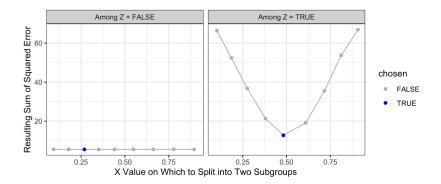


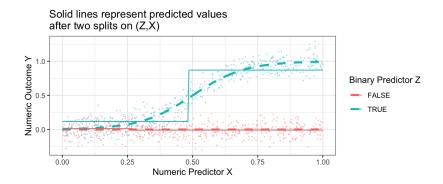


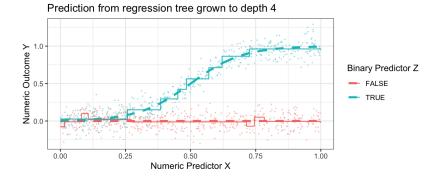


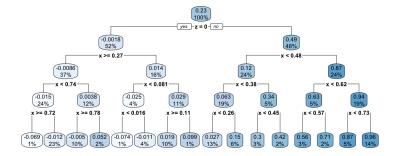












- 1. Begin with all data
- 2. Consider many ways to partition into two parts
- 3. Estimate the mean squared prediction error for each: $E((\hat{Y} Y)^2)$
- 4. Choose the split that minimizes mean squared prediction error Repeatedly, apply steps (1-4) to each subgroup. Stop by a data-driven rule.

Trees: Some terminology

- Branch = one direction of a split
- ► Leaf = terminal node at the bottom



When presented with a new case, find its leaf. Predict the mean of Y among learning cases in that leaf.

A tree can be interpretable: Realistic example

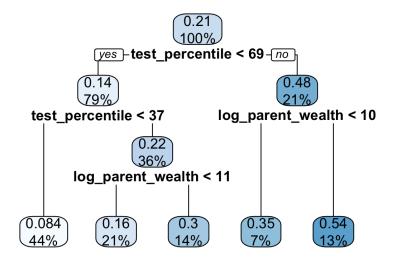
- Outcome: Has spouse or partner with BA degree at age 35
- ► Predictors: Demographics and measures of family background

A tree can be interpretable: Realistic example

```
library(tidyverse)
library(rpart)
library(rpart.plot)
all_cases <- read_csv("https://soc114.github.io/data/nlsy97_simulated.csv")
rpart.out <- rpart(
    y ~ sex + race + mom_educ + dad_educ + log_parent_income +
        log_parent_wealth + test_percentile,
        data = all_cases
)
rpart.plot(rpart.out)</pre>
```

A tree can be interpretable: Realistic example

Y = has spouse or partner with BA degree at age 35



Sometimes you want a simpler decision rule

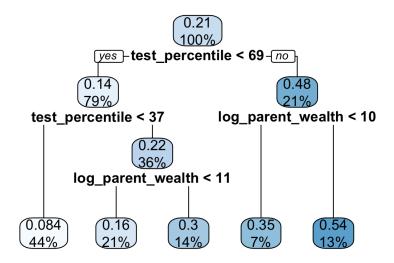
- ► you worry you are fitting to noise
- ▶ you want to explain predictions more easily

Sometimes you want a simpler decision rule

- you worry you are fitting to noise
- you want to explain predictions more easily

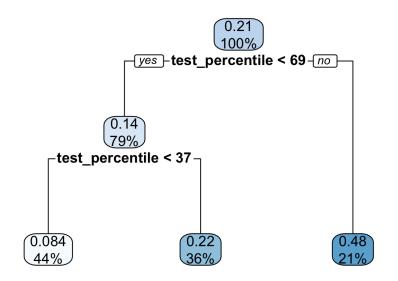
Then you prune the tree: Trim back some branches

Pruning a tree: Original tree



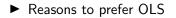
Pruning a tree: Pruned tree

```
pruned <- prune(rpart.out, cp = .02)
```



Discussion: Why prefer a tree vs OLS?

Reasons to prefer a tree



Discussion: Why prefer a tree vs OLS?

Reasons to prefer a tree

- No need to assume a functional form
- Easy to explain how a prediction is made: follow the decision branches
- Reasons to prefer OLS

Discussion: Why prefer a tree vs OLS?

Reasons to prefer a tree

- No need to assume a functional form
- Easy to explain how a prediction is made: follow the decision branches
- Reasons to prefer OLS
 - More widely known in social science
 - Better if the functional form is correct

From regression to causal trees

What step would change if our goal was to discover heterogeneous causal effects?

Regression Trees

- 1. Begin with all data.
- Split to two sides with very different average value of Y.
- Repeat 1–2 on each leaf until a stopping rule is reached.

From regression to causal trees

What step would change if our goal was to discover heterogeneous causal effects?

Regression Trees

- 1. Begin with all data.
- Split to two sides with very different average value of Y.
- Repeat 1–2 on each leaf until a stopping rule is reached.

Causal Trees

- 1. Begin with all data.
- 2. Split to two sides with very different average value of $Y^1 Y^0$.
- Repeat 1–2 on each leaf until a stopping rule is reached.

Athey, S. & G. Imbens. 2016. Recursive partitioning for heterogeneous causal effects. *PNAS*.

Causal trees in randomized experiments

Setting:

- Many pre-treatment variables \vec{X}
- Randomized treatment A

Procedure:

- ► In sample 1, partition into leaves.
- In sample 2, estimate effects within leaves by difference in means.

Causal trees in observational studies

Setting:

- Many pre-treatment variables \vec{X}
- Non-randomized treatment A

Procedure:

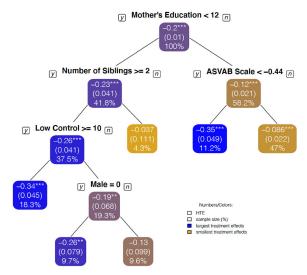
- ► In sample 1, partition into leaves.
- In sample 2, estimate effects within leaves by difference in means, adjusted for confounding by IPW or matching.

Brand, Xu, Koch, & Geraldo. 2021. "Uncovering sociological effect heterogeneity using tree-based machine learning." Sociological Methodology, 51(2), 189-223.

Causal trees in observational studies

Brand, Xu, Koch, & Geraldo (2021)

Causal question: Effect of college completion on the proportion of time in low-wage work.



Causal trees in observational studies

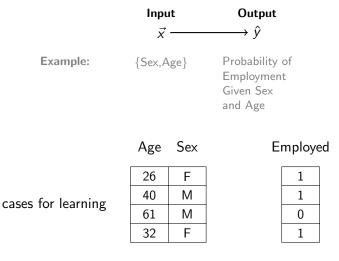
The setting:

- Many pre-treatment variables \vec{X}
- Non-randomized treatment A
- Conditional exchanneeability holds

The procedure

- One sample: Learn the tree
- ► Learn propensity score function
- New sample: Inverse-probability-weighted or matching estimates in each leaf

Recap: Machine learning as an input-output function



Learning goals for today

By the end of class, you will be able to

understand the notion of supervised machine learning

- ► an input-output machine
- learned on some learning cases
- used to predict for new cases

▶ apply that notion to the specific case of regression trees